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Abstract— Workflow scheduling has remained a critical 
functionality of modern data-centric workflow management 
systems. Cloud computing, which provides practically unlimited 
computing and storage resources, has enabled a new generation 
of data-centric workflows, called big data workflows. New big 
data workflow scheduling algorithms should optimally utilize 
the characteristics of cloud computing such as heterogeneous 
virtual machines, the elastic resource provisioning model, and 
the pay-as-you-go pricing model, as well as the time and 
monetary cost to transfer large amounts of data. In this paper, 
we consider one case of the general big data workflow 
scheduling problem where a deadline, , is given for a workflow, 
W, and the goal is to minimize the monetary cost of running W 
in the cloud while satisfying the given deadline, . To this end, 
we leverage the power of Evolutionary Algorithms (EA) in order 
to search for the best solution within a reasonable planning time. 
More specifically, we introduce an innovative fitness function 
that combines the time and monetary cost of a workflow in one 
metric. Based on the EA and the fitness function, we design a 
deadline-constrained big data workflow scheduling algorithm, 
called iCATS (Improved Cultural Algorithms-based Task 
Scheduling). Extensive experiments demonstrate the statistical 
advantages of iCATS over existing representative EA workflow 
scheduling algorithms, including random (Rand), Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), and 
Cultural Algorithms (CA). 

Keywords- big data workflows; Cultural Algorithms; workflow 
scheduling; cloud computing; evolutionary algorithms. 

I.  INTRODUCTION  
Workflow scheduling is a key component of workflow 

management systems [1, 2, 3, 4]. The challenges of big data 
in terms of volume, variety, and velocity, and the potential 
unleashed by cloud computing [5] in the provisioning of 
practically unlimited computing and storage resources 
brought about active research on a new generation of data-
centric workflows, called big data workflows [6, 7]. 
Currently, three lines of research are being pursued for big 
data workflow scheduling in the cloud. The first is the 
category of deadline-constrained workflow scheduling [4, 8]. 
The second is that of budget-constrained workflow 
scheduling [6, 9]. And the third line of research considers 
both the budget and deadline constraints [11, 12], and 
attempts to optimize both based on some tradeoffs between 
the two [1, 3]. In this research, the focus is on the design and 
implementation of a workflow scheduling algorithm for 
deadline-constrained big data workflow applications. Several 

challenges must be addressed in order to solve a deadline-
constrained big data workflow scheduling problem: 

First, given two schedules sch1 and sch2 for a workflow 
W, what performance metric should be used to compare the 
quality of the two schedules?  

Second, cloud computing uses an elastic resource 
provisioning model, so the workflow scheduling algorithm 
not only needs to decide the mapping and scheduling of 
individual workflow tasks, but also make decisions on cloud 
virtual machine provisioning and deprovisioning. 

Third, cloud computing uses the pay-as-you-go pricing 
model. For cloud computing, we need to consider monetary 
cost in addition to other Quality of Service (QoS) 
requirements such as makespan to compute cost. 

Finally, one should consider the data transfer time, which 
can be significant for big data workflows. 

In this paper, we leverage the power of EA [13] to search 
for the best solution within a reasonable time. Furthermore, 
we introduce an innovative fitness function that combines the 
temporal and monetary costs of a workflow schedule. 

Using EA, and innovative strategies in knowledge source 
(KS) exploration and exploitation, we design a deadline-
constrained big data workflow scheduling algorithm, called 
iCATS (Improved Cultural Algorithms-based Task 
Scheduling). Extensive experiments demonstrate the 
advantages of iCATS over existing representative workflow 
scheduling algorithms, including Random, GA [12], PSO 
[14], and CA [15]. 

The rest of the paper is organized as follows. First, in 
Section II, we provide some background information on 
workflow scheduling and Cultural Algorithms. Section III 
presents related work. In Section IV, we define and formalize 
our cloud-based workflow system model. In Section V, we 
describe our workflow scheduling algorithm, iCATS, in 
detail. Then, in Section VI, the experimental results are 
shown and discussed. Finally, the conclusions and future 
work are presented in Section VII. 

II. BACKGROUND 

A. Workflow Scheduling  
The big data workflow scheduling problem is related to 

the Flow-Shop scheduling, which is a special case of the Job-
Shop scheduling problem [16]. The Job-Shop scheduling 
problem aims to minimize the makespan by assigning n 
independent jobs of varying processing times to m machines 
of varying processing power. The Flow-Shop scheduling 
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problem, in addition, imposes an order on the execution of 
the n jobs. In contrast, the big data workflow scheduling 
problem needs to consider not only the precedence order 
between jobs, but also the data transfer between them, which 
might be large in volume. In addition, we need to consider 
the characteristics of cloud computing, especially the elastic 
virtual machine provisioning model, in which the pool of 
computing virtual machines is dynamic. This elastic nature of 
cloud computing introduces a new opportunity but also a 
challenge since it requires consideration of user-driven QoS 
constraints, such as budget, deadline, reliability, and security.  

In general, a big data workflow scheduling algorithm 
needs to make four kinds of decisions:  
1) Virtual machine provisioning and deprovisioning: how 

many VMs do we need and what types? When do we 
need to provision and deprovision these VMs? 

2) Task mapping: on which VM should a workflow task T 
be running?  

3) Task scheduling: after a task T is mapped to a VM, the 
system needs to decide when to run T on VM.  

4) Data transfer scheduling: the system needs to decide 
when a dataset D needs to move from one VM to another.  

B. Cultural Algorithms 
One of the evolutionary computational systems that 

simulates social evolution is the Cultural Algorithms (CA) 
proposed by Reynolds [13, 15]. Due to its nature, culture can 
be viewed as a complex adaptive system, in which different 
heterogeneous agents are working together and interacting 
with the environment. This interaction of intelligent agents 
can result in higher-level behaviors that can be applied to the 
solution of problems at different ranges of temporal and 
spatial complexity. 

CA can be conceptualized as a knowledge intensive 
evolutionary search process. While a heuristic can be viewed 
as a shortcut to a solution, a meta-heuristic like GA searches 
through a space of heuristics to find an appropriate one. A 
Cultural Algorithm is a hyper-heuristic that employs problem 
related knowledge to search through a space of meta-
heuristics to find an optimal social configuration. 

In traditional methods of Evolutionary Computation there 
was no implicit or explicit mechanism for storing and 
transmitting the knowledge from one generation to another. 
As a competitive advantage, CA provides an explicit 
mechanism for selecting, storing, and evolving the knowledge 
during a typical search. CA, as a dual-inheritance system, has 
two major components: the Population Space and the Belief 
Space [13] that are able to evolve in parallel. In addition to 
those two components, there is a communication protocol that 
allows the Belief Space and the Population Space to interact 
with each other and exchange their knowledge (Figure 1). 

In each generation, individuals in the Population Space are 
first evaluated with an objective function obj(). An 
acceptance function accept() is then used to determine which 
individuals will be allowed to update the Belief Space. 
Experiences of those chosen individuals are then added to the 
contents of the Belief Space via function update(). The Belief 
Space can be viewed as a network of knowledge sources. 
Thus, an update to one knowledge can be propagated to other 

knowledge sources in the network. For the workflow 
scheduling application described here the Belief Space is 
comprised of three knowledge sources as follows: 

• Normative knowledge: it is used to store the highest 
and lowest values for different numeric attributes.  

• Situational knowledge: it contains the best exemplar 
(Elite) found in each generation of the population.  

• Domain knowledge: it consists of fitness values of 
the individuals and gets updated in every iteration. 

Knowledge from the Belief Space can influence the 
selection of individuals for the next generation of the 
population, analogous to the evolution of human culture, 
through the influence() function. This supports the idea of dual 
inheritance in that the Population Space and the Belief Space 
are updated at each step based upon feedback from each other. 
The influence of the knowledge sources updates the 
knowledge of an individual in the social fabric or network. 
The CA repeats this accept-update and influence process for 
each generation until the termination condition is met.  

III. RELATED WORK  
Several evolutionary approaches have been proposed to 

solve workflow scheduling problem in the cloud [12, 14]. 
One category of approaches is based on particle swarm 
optimization (PSO) [14, 17]. They can be single- or multi-
objective optimization tools with the goal of minimizing the 
total of workflow execution cost. Genetic Algorithms (GA) 
have also been proposed to address the problem of workflow 
scheduling in cloud computing [12, 18]. In these approaches, 
chromosomes represent the encoding of the cloud computing 
virtual machines and workflow task assignments. Knowledge 
produced during search resides in the chromosome structures. 
If a top performer is modified, it may mean that the 
knowledge is no longer carried in the population. Individuals 
carry the burden of accumulated knowledge in their 
chromosomal structures.  

CA represents a knowledge intensive approach such that 
the knowledge collected by a population is subsequently 
transferred into the Belief Space. Thus, while a top performer 
is modified, information about its performance still resides in 
the corresponding Belief Space. Traditionally in a CA, the 
KSs compete with each other to generate improved 
individuals in the population in the spirit of “survival of the 
fittest”. The KS that generates more fit individuals in the 
population is more likely to be used. 

What differentiates iCATS from the traditional approach 
is that it allows KSs in the Belief Space to cooperatively 
produce new individuals as well. This set of individuals is 

Figure 1: Cultural Algorithms [13]. 
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called the Comprehensive Elite since it takes elite members 
from Situated Knowledge and combines them with 
knowledge from other sources such as normative knowledge 
to generate a combined generalized solution. This approach 
is applied and compared to the existing approaches above.   

Another category of workflow scheduling algorithms is 
the cluster-based. For cluster-based workflow scheduling 
algorithms [10, 11], the goal is to minimize the total data 
movement between clusters by possibly assigning similar 
workflow tasks into the same cluster. Workflow tasks can be 
clustered based on either their execution times or the data 
movement sizes. For list-based workflow scheduling 
algorithms [19], workflow tasks are ranked and sorted based 
on their execution times and data dependencies. Then, the 
ranked tasks are assigned to the cloud virtual machines for 
execution.  

In our previous work [8, 9], we proposed cluster-based 
scheduling algorithms in a heterogeneous cloud computing 
environment. We have used single-objective workflow 
scheduling optimization and considered the deadline and 
budget separately as the QoS constraints. 

IV. SYSTEM MODEL 
To execute a big data workflow in the cloud, we need to 

model the cloud and big data workflow first. A cloud 
computing environment is modeled as follows: 

Definition 4.1 (Cloud Computing Environment C): A 
cloud computing environment C is a 7-tuple C(VMT, VMI, 
Type, VMC, VPrice, DTR, DPrice), where: 

• VMT is a set of virtual machine types, each individual 
virtual machine type is denoted by VMTj. 

• VMI is a set of virtual machine instances, each virtual 
machine instance is denoted by VMIi.  

• Type: VMI  VMT is the virtual machine type 
function. Type(VMIi) returns the virtual machine type 
of instance VMIi. 

• VMC: VMT  R+ is the virtual machine capacity 
function. VMC(VMTj) returns the computation speed 
of virtual machine type VMTj in terms of MIPS 
(Million Instructions Per Second). R+ is the set of all 
real positive numbers. 

• VPrice: VMT  R+ is the virtual machine cost 
function. VPrice(VMTj) returns the monetary cost for 
using a virtual machine of type VMTj in terms of US 
dollars per hour.  

• DTR: VMI × VMI  R+ is the data transfer rate 
function. DTR(VMI1, VMI2) returns the network 
bandwidth between VMI1 and VMI2 in terms of 
MBytes per second.  

• DPrice: VMI × VMI  R+ is the data transfer cost 
function. DPrice(VMI1, VMI2) returns the monetary 
cost of transferring data from VMI1 to VMI2 in terms 
of US dollars per MB. 

Definition 4.2 (Big Data Workflow W): A big data 
workflow is modeled as a 4-tuple W = (T, D, TSize, DSize), 
where: 

• T is a set of tasks in the workflow W. Each individual 
task is denoted by Tk. 

• D ⊆ T × T is a set of data dependency edges among 
tasks. Dk1, k2 denotes the data dependency from Tk1 to 
Tk2.  

• TSize: T  R+ is the task size function. TSize(Tk) 
returns the size of task Tk in terms of million 
instructions to measure the workload of the code for 
task Tk. 

• DSize: D  R+ is the data size function. DSize(Dk1,k2) 
returns the size of the data product Dk1,k2 that is 
produced by Tk1 and consumed by Tk2 in terms of 
MBytes.  

In order to execute a big data workflow W in a cloud 
computing environment C, each workflow task should be 
mapped to a cloud virtual machine instance. We define the 
task mapping function, M, as follows: 

Definition 4.3 (Task Mapping M): Suppose there are I 
virtual machine instances and K workflow tasks, a task 
mapping is represented by a K-element vector M such that 
M(k) indicates the virtual machine instance to which Tk is 
mapped. Figure 2 shows a workflow with five tasks, T1 - T5, 
mapped to three cloud virtual machine types, VMI1, VMI2, and 
VMI3. Here, the task mapping is M = <1, 2, 1, 2, 3> means 
tasks T1, and T3 are mapped to virtual machine instance VMI1 
(M(1)= M(3) = 1), tasks T2 and T4 are mapped to virtual 
machine instance VMI2 (M(2) = M(4) = 2), and task T5 is 
mapped to virtual machine instance VMI3 (M(5)= 3).  

We define a big data workflow graph as a weighted DAG 
that includes a set of tasks and their data dependencies. The 
weights of the tasks and data edges are based on the average 
task computation and average data transfer time, respectively. 
A big data workflow graph can be defined formally as: 

Definition 4.4 (Big Data Workflow Graph G): Given a 
workflow W in a cloud computing environment C and task 
mapping M, a big data workflow graph G is modeled as a 
weighted directed acyclic graph with a 7-tuple G(T, D, M, 
TCT, DTT, TCC, DTC), where: 

• The vertices of the graph represent a set of tasks T. 
• The edges of the graph represent a set of data 

dependencies D. 
• M is a task mapping in the cloud. 
• TCT: T×M  R+ is the task computation time 

function. TCT(Tk, M) returns the computation time of 
Tk on virtual machine M(k). It is defined as: 

 

• DTT: D×M  R+ is the data transfer time function. 
It returns the data transfer time of Dk1,k2 from virtual 

Figure 2: An example of workflow task mapping in the cloud.
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machine M(k1) to virtual machine M(k2). It is defined 
as: 

 

• TCC: T × M  R+ is the task computation cost 
function. TCC(Tk, M) returns computation monetary 
cost of Tk on virtual machine M(k). It is defined as: 

 
• DTC: D × M  R+ is the data transfer cost function; 

It returns the data transfer monetary cost of Dk1,k2  from 
virtual machine M(k1) to virtual machine M(k2). It is 
defined as: 

 
Once each workflow task is assigned to some cloud virtual 

machine instances then, the workflow scheduler will specify 
the actual execution start time and finish time of each 
workflow task. We denote Tentry as the first task and Texit as the 
end task of a workflow. The actual start time is defined as 
follows: 

Definition 4.5 (Actual Start Time AST): Given a 
workflow graph G and task mapping M the actual start time 
of Tk on a virtual machine M(k), denoted by AST(Tk, M), is 
the actual start time when all predecessors of task Tk have 
completed their executions and all input data have arrived at 
virtual machine M(k). It is officially defined as: 

 

where: 
 

 

 

 

 and . 

Definition 4.6 (Actual Finish Time AFT): Given a 
workflow graph G and task mapping M, the actual finish time 
of Tk, denoted by AFT(Tk, M), is defined as: 

 

Workflow makespan is the total time needed to execute 
the whole workflow starting from the beginning task, Tentry 
through the end task, Texit. Our goal is to come up with an 
optimal workflow schedule such that the workflow execution 
cost is minimized while the workflow makespan meets the 
given deadline. We define the makespan and cost as follows: 

Definition 4.7 (Workflow Makespan WMS): Given a 
workflow graph G in a cloud computing environment C and 

task mapping M, the total execution time of the workflow 
denoted as WMS, is defined as: 

 

Definition 4.8 (Workflow Execution Cost WCO): 
Given a workflow graph G in a cloud computing environment 
C and task mapping M, the total execution cost of the 
workflow, denoted as WCO, is defined as: 

 

iCATS is an evolutionary algorithm that operates on a set 
of scheduling solutions in a population. In order to evaluate 
each generated solution, one must define a quality or fitness 
function. We formally define our fitness function as follows: 

Definition 4.9 (Fitness Score): Suppose WMS is the 
makespan, WCO is the cost, and  is the provided deadline. 
The fitness score is defined as: 

  

where, maxCost is the workflow execution cost once we map 
all the workflow tasks into the most expensive (the fastest) 
cloud virtual machine. A fitness score between 0 - 1 is 
produced for each generated scheduling solution. If the 
makespan of a scheduling solution is greater than the deadline 
, (WMS > ), then its score will be between [0 - 0.5]. And, 

if a solution meets the deadline (WMS  ) then its score will 
be between [0.5 - 1]. In this case, the closer the fitness score 
to 1, the better the scheduling solution. Therefore, we define 
our scheduling problem as follows: 

Definition 4.10 (Workflow Cost Minimization): Given 
a workflow W in a cloud computing environment C, task 
mapping M, and deadline , the deadline-constrained 
scheduling problem is formalized to search for the optimal 
task mapping, Mopt as: 

 

In the next section, we present a cultural algorithms based 
method called iCATS to search for the optimal task mapping 
Mopt in the space of all possible task mappings.  

V. THE ICATS ALGORITHM 
In this paper, we propose a new big data workflow 

scheduling under deadline constraints using an improved 
version of the Cultural Algorithms (iCATS). The improved 
version of Cultural Algorithms employs a novel mechanism 
of synthesizing a globally optimal solution called 
Comprehensive Elite. The Comprehensive Elite is unique to 
our approach in that it allows for multiple knowledge sources 
to collaborate in the generation of a new population of 
individuals. The experimental results will show the 
competitive advantage of our approach over competitors. 

Algorithm 1 presents the iCATS algorithm. Workflow W, 
deadline , virtual machines specifications VM, and iCATS 
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configurations CC are the four required inputs for iCATS. 
iCATS returns a near-optimal scheduling solution with the 
least execution cost as a set of records (<task, virtual machine 
number, actual start time, actual finish time>) for all the 
workflow tasks. In addition, the solution has the records of 
both provisioning and deprovisioning of the virtual machines. 
After parsing the workflow specification and generating the 
weighted DAG, the maxCost is calculated. iCATS creates the 
Belief Space configuration and produces the initial 
population from a uniform random distribution. Then, it 
assesses the performance of each individual solution using 
the fitness function (Definition 4.9). In the next step, iCATS 
selects the top performing individuals and updates the Belief 
Space and makes the Comprehensive Elite. 

 Next, iCATS generates a new population by using the 
influence function, based on the knowledge available in the 
Belief Space (lines 10-23). The influence function, in fact, 
causes individuals to evolve within a range found in the 
normative knowledge and to move toward the best exemplar 
found in the situational knowledge. iCATS then computes the 
makespan, and cost for each solution of the newly generated 
population. In order to increase the diversity of scheduling 
solutions, iCATS applies both crossover and mutation 
operators to some randomly selected solutions (line 24). In 
line 25, the Comprehensive Elite is added to the population. 
Then the fitness score of each new individual solution is 
calculated in line 26. In lines 29-32, iCATS generates the 
scheduling solution sch, based on the task mapping 
information M, and cloud virtual machine configuration. 
iCATS inserts the deprovisioning records into the scheduling 
solution as well (lines 33-36). These records represent what 
and when the idle virtual machines should be released. 
Finally, iCATS returns the best workflow scheduling solution 
as well as the corresponding makespan and cost (line 37). 

iCATS calls Update_BLF() function to update the Belief 
Space. Update_BLF() is presented in Algorithm 2. In a loop 
(lines 1-15), both the Situational and Normative knowledge 
are determined based on the population of elites. In lines 2-4, 
if the fitness score of the solution is better than the Situational 
fitness score then the Situational knowledge is replaced with 
the best solution found in the Elites. In the next step, the 
VMmin and VMmax for each task (range of virtual machines 
used for each task) are specified. In addition, the 
corresponding fitness score as the lower bound and the upper 
bound are specified (lines 5-14). In line 16, the range of 
virtual machines used for each task in the Elites are computed 
and finally the updated Belief Space is returned (line 17). 

  iCATS also calls makeCompElite() to create the 
comprehensive Elite using different sources of knowledge 
available in the Belief Space. In line 1, an empty solution is 
created. In line 2, the list of Elites are sorted based on their 

Algorithm 1: iCATS 
Input: Workflow W, Deadline  , Virtual machines specifications VM, 
iCATS configurations CC 
Output: The optimal workflow scheduling solution sch, and the 
corresponding makespan, and cost 
 
Begin 
1. Situational_K  {}; Normative_K  {}; 
2. BLF  {Situational_K, Normative_K}; // Create the Belief Space 
3. List_BestSolutions  {Situational_K}; 
4. Randomly generate the initial population Pop, and calculate the fitness 
score of each individual solution.  
5. While termination condition not reached do 
6.    Pop_Elites  rank solutions based on their fitness score, and choose 
the top performers  
7.    BLF  Update_BLF(BLF, Pop_Elites);    //Alg. 2 
8.    CompElite  makeCompElite(BLF, Pop_Elites,  CC.nElites); //Alg. 3
9.    List_BestSolutions   BLF.Situational_K  
10.    dx = 0; // step size 
11.    For i = 1 to CC.Pop_size do 
12.       For j = 1 to W.num_Tasks do 
13.          dx = round(BLF.Normative_K.Size[j] × rnorm(1)); 
14.          If (Pop[i].VM[j] < BLF.Situational_K.VM[j]) then 
15.             dx = abs(dx); 
16.           ElseIf (Pop[i].VM[j]>BLF.Situational_K.VM[j]) then 
17.             dx = -1 × abs(dx); 
18.          End If 
19.          Pop[i].VM[j]  Pop[i].VM[j] + dx; 
20.       End For 
21.       Pop[i].Makespan  Makespan(Pop[i]); 
22.       Pop[i].Cost  Cost(Pop[i]); 
23.    End For 
24.    Apply crossover and mutation to randomly selected individuals. 
25.    Pop  Pop  CompElite 
26.    Calculate the fitness score of each new individual solution 
27. End While 
28. M  BLF.Situational_K; // add the best solution found to M 
29. For Each pair Mk in M do 
30.    Insert (Tk, VMj, AST(Tk, VM), AFT(Tk, VM) into schedule sch 
31.    Insert (Provision, VMj of VM(Tk) type, ProvisionT(VMj)) 
         into schedule sch 
32. End For 
33. For Each active VMj do 
34.    DeprovisionT(VMj) = The AFT of the last task assigned to VMj 
35.    Insert (Deprovision, VMj, DeprovisionT(VMj)) into schedule sch   
36. End For 
37. Return sch, makespan and execution cost of sch  
End // End of algorithm 

Algorithm 2: Update_BLF 
Input:  Belief Space BLF,  Population of Elites Pop_Elites 
Output:  Updated Belief Space BLF 
 
Begin 
1. For i = 1 to |Pop_Elites| do 
2.    If (Pop_Elites[i].FScore > Situational_K.FScore) then 
3.       Situational_K  Pop_Elites[i]; 
4.    End If 
5.    For j = 1 to  Pop_Elites.nTask do 
6.       If (Pop_Elites[i].VM[j] < BLF.Normative_K.Min[j]) 
7.          BLF.Normative_K.Min[j] = Pop_Elites[i].VM[j]; 
8.          BLF.Normative_K.LowerB[j] = Pop_Elites[i].FScore; 
9.       End If 
10.     If (Pop_Elites[i].VM[j] > BLF.Normative_K.Max[j]) then 
11.        BLF.Normative_K.Max[j] = Pop_Elites[i].VM[j]; 
12.        BLF.Normative_K.UpperB[j] = Pop_Elites[i].FScore; 
13.     End If 
14.   End For 
15. End For 
16. BLF.Normative_K.Size = BLF.Normative_K.Max -   
BLF.Normative_K.Min; 
17. Return BLF; 
End
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 fitness scores. Then, a number of top-ranked Elites, nElites, 
are selected (line 3). And the sum of their fitness scores is 
calculated in line 4. In line 5, given the list of top-ranked 
Elites, the frequency of each VM, is computed per column. 
In line 6-18, for each task, the normalized relative frequency 
for each VM is calculated. In this loop a VM with the highest 
normalized frequency is selected and assigned to the 
corresponding task in the comprehensive Elite. At the end, in 
line 19, the Comprehensive Elite is returned. 

VI. EXPERIMENTAL RESULTS 
In this section, we present and discuss the experimental 

results and compare iCATS with the other competitive 
evolutionary workflow scheduling approaches. 

A. Performance Evaluation 
  We compare the performance of iCATS with Random, 

GA, PSO, and CA approaches on selected workflow 
scheduling problems. In order to evaluate and compare the 
performance of these approaches, we use four synthetic 
workflow applications based on real scientific workflows 
named: Montage, CyberShake, Epigenomics, and LIGO 
Inspiral (Figure 3) [20]. These workflow applications are 
developed for various scientific domains such as 
bioinformatics and earthquake data sets. We select different 
sizes of these workflow applications. We assume each task 
can be executed on every cloud virtual machine. Each type of 
cloud virtual machine consists of an hourly cost for virtual 
machine utilization and the execution time is based on the 
complexity level of the analytics workload.  

In Tables 1 and 2, we list the information of workflow 
tasks and virtual machines used in our experiments. Table 2 
includes empirical data of ten cloud virtual machine types 
with their computation capacities and the associated costs 
adopted from Amazon EC2. In this list, the first virtual 
machine type, VM1, is the slowest and cheapest option and 

TABLE 1: DEFAULT SETTINGS USED IN THE EXPERIMENTS. 
# of workflow Tasks 

# of instructions in a Task 
Data size (MB) 

# of virtual machines 
Population size 

Maximum generation 
Crossover probability 
Mutation probability 
Maximum iteration 
Number of Elites 

25-5000 
1000 - 10000 

0.1 - 100 
10 

100 - 500 
70 - 100 
0.8 - 0.9 
0.1 - 0.2 

200 
0.2 × Pop 

virtual machine of type VM10 is the fastest and the most 
expensive option in terms of cost.  

We demonstrate the performance of Random, GA, PSO, 
CA, and iCATS approaches in terms of the workflow 
execution cost and makespan defined in section IV. In our 
experiments, we assume the data transfer rates among all 
virtual machine types are fixed.  

B. Results and Analysis 
iCATS was evaluated against the other four approaches, 

Random, GA, PSO, and CA, using four distinctive workflow 
applications. The comparisons were compared with different 
levels of workflow complexity and with different provided 
deadlines. We did the experiments by varying the complexity 
of the workflows in term of the number of tasks and presented 
the results of cost parameter. 

Algorithm 3: makeCompElite 
Input:  Belief Space BLF,  Population of Elites Pop_Elites,  Number of 
Elites to choose  CC.nElites  
Output: Comprehensive Elite CompElite 
Begin 
1. CompElite  [];  
2. Rank the Elites decreasingly based on their fitness scores 
3. topElites  Select CC.nElites number of top-ranked Elites 
4. totalFscore  sum(topElites.Fscores); 
5. freqMatrix  calcFrequency(topElites); //Calculate VMs’ frequency 
per column.  
6. For i = 1 to nTask do 
7.    VM_Score  0; 
8.    For j = 1 to CC.nElites do 
          // calculate the normalized relative frequency 
9.       VM_freq  find_VM_Freq(freqMatrix, topElites[j].VM[i]); 
10.     Relative_freq  VM_freq/CC.nElites; 
11.     Normalized_VM  (Relative_freq × topElites[j].Fscore) / 
totalFscore; 
12.      If (Normalized_VM >= VM_Score) then 
13.         Best_VM  topElites[j].VM[i]; // Record the VM number 
14.         VM_Score  Normalized_VM; // Update VM_Score 
15.      End If 
16.   End For 
17. CompElite.VM[i]  Best_VM; 
18. End For 
19. Return CompElite; 

TABLE 2: CLOUD VIRTUAL MACHINE TYPES USED IN THE 
EXPRIMENTS. 

VM 
Type  

Million Instructions 
per second (MIPS) 

Data Transfer 
(MB/S) 

Cost per 
Hour ($) 

VM1 50 10 0.095 
VM2 200 25 0.38 
VM3 300 35 0.57 
VM4 450 50 0.76 
VM5 600 65 0.95 
VM6 700 80 1.14 
VM7 750 95 1.26 
VM8 850 110 1.57 
VM9 1000 125 2.16 
VM10 1200 140 2.48 

Figure 3: The structure of scientific workflows [20]. 
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We compared the results of all five approaches and have 
demonstrated the relative cost minimizations by varying the 
number of workflow tasks from 25 to 5000. In Figure 4, we 
show the workflow execution cost in terms of dollar by 
varying the number of workflow tasks and fixing the number 
of virtual machines to 10. In these experiments, sufficient 
deadlines were provided to execute each workflow as there 
are some cases that the provided deadlines are not enough to 
complete the workflow. The workflow execution costs are 
increased by increasing the number of workflow tasks over 
all four strategies.  

When compared to other workflows, CyberShake 
workflow has a relatively simpler structure and consequently 
the results of the different scheduling algorithms appear to be 
very similar. It can be seen that iCATS algorithm 
outperforms Random, GA, PSO, and CA approaches. This 
results in greater improvement margin with a greater number 
of workflow tasks. In the next step, we compared the cloud 
virtual machine utilization of the five approaches (Figure 5). 
We calculated the workflow makespans by varying the 
numbers of workflow tasks for all the four workflow 
applications. From the figure, we can observe iCATS 
exhibited statistically better performance when compared to 
the other approaches across all four categories of workflow 
applications and all sizes of each. iCATS has efficiently 
utilized the max provided deadline to minimize the workflow 
total execution cost. In addition, as the size of each of the four 
workflow applications was increased, the iCATS system was 
observed to be less affected by the problem increases in all 

cases across all problems. This is a particularly good trait for 
a scheduler in the cloud since environments and problem 
sizes can change dramatically over time.  

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed a new evolutionary workflow 

scheduling algorithm by adopting an improved version of 
Cultural Algorithms by allowing different knowledge sources 
to collaborate on a new solution. The goal was to minimize 
the workflow execution cost while meeting the specified 
deadlines. We compared our strategy with Random, GA, 
PSO, and CA approaches. 

The results of the comparison illustrate the performance 
advantages of iCATS approach. Our main contributions are 
1- adopting CA to design the novel workflow scheduling 
solution; 2- improving CA performance by adding a 
comprehensive solution (Comprehensive Elite) to the 
population; and 3- defining a new fitness function to consider 
both workflow makespan and execution cost in one formula. 
In the future, we plan to improve the performance of our 
strategy by adopting a novel rule-based Cultural Algorithms 
with improved heuristic to find the optimal scheduling 
solutions. In addition, we will compare iCATS with more 
existing scheduling algorithms. Also, there will be situations 
when a multi-objective problem needs to be addressed. The 
extension of Cultural Algorithms to multi-objective problems 
will be considered as well. It will be of interesting to see how 
the iCATS algorithm is able to accommodate scaling up for 
those types of problems. 

Figure 4: Comparisons of Workflow Execution Cost. 

105



ACKNOWLEDGMENT 
This work is supported by National Science Foundation, 

under grant NSF ACI-1738929 and 1747095. 

REFERENCES 
[1] C. Lin, and S. Lu, “SCPOR: An elastic workflow scheduling algorithm 

for services computing”, pp. 1-8, SOCA 2011. 
[2] J. Liu, E. Pacitti, P. Valduriez, D. Oliveira, and M. Mattoso, “Multi-

objective scheduling of Scientific Workflows in multisite clouds”, 
Future Generation Comp. Syst. 63, pp. 76-95, 2016. 

[3] H. Arabnejad, and J. G. Barbosa, “Multi-QoS constrained and Profit-
aware scheduling approach for concurrent workflows on 
heterogeneous systems”, Future Generation Comp. Syst. 68, pp. 211-
221, 2017. 

[4] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-
constrained workflow scheduling algorithms for Infrastructure as a 
Service Clouds”, Future Generation Comp. Syst. 29(1), pp. 158-169, 
2013.  

[5] F. Ian, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid 
computing 360-degree compared”, In Grid Computing Environments 
Workshop, 2008. GCE'08, pp. 1-10, IEEE, 2008. 

[6] C. Q. Wu, and H. Cao, “Optimizing the Performance of Big Data 
Workflows in Multi-cloud Environments Under Budget Constraint”, 
SCC, pp. 138-145, 2016. 

[7] F. Llwaah, J. Cala, N. Thomas, “Simulation of Runtime Performance 
of Big Data Workflows on the Cloud”, EPEW, pp.141-155, 2016. 

[8] M. Ebrahimi, A.Mohan, and S. Lu, “Scheduling Big Data Workflows 
in the Cloud under Deadline Constraints”, in Proc. of the IEEE 
International Conference on Big Data Computing Service and 
Applications (BigDataService 2018), pp. 33-40, 2018. 

[9] A. Mohan, M. Ebrahimi, S. Lu, A. Kotov, “Scheduling Big Data 
Workflows in the Cloud under Budget Constraints”, in Proc. of the 
IEEE Scalable Cloud Data Management Workshop, in conjunction 
with IEEE Conference on Big Data, pp. 2775-2784, 2016. 

[10] K. Bochenina, N. Butakov, A. Dukhanov, and D. Nasonov, “A 
clustering-based approach to static scheduling of multiple workflows 

with soft deadlines in heterogeneous distributed systems”, in Proc. Of 
the Procedia Computer Science 51, pp. 2827-2831, 2015. 

[11] A. Deldari, M. Naghibzadeh, S. Abrishami, and A. Rezaeian, “A 
Clustering Approach to Scientific Workflow Scheduling on the Cloud 
with Deadline and Cost Constraints”, in Proc. of the Amirkabir 
International Journal of Modeling, Identification, Simulation & 
Control 46.1, pp. 19-29, 2014. 

[12] J. Yu, and R. Buyya, “Scheduling scientific workflow applications 
with deadline and budget constraints using genetic algorithms”, in 
Proc. of the Scientific Programming, v.14 n.3,4, pp. 217-230, 2006. 

[13] R. G. Reynolds, and B. Peng, "Cultural algorithms: Modeling of how 
cultures learn to solve problems", Proc. 16th Int. Conf. Tools Artif. 
Intell. (ICTAI) pp. 166-172, 2004. 

[14] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm 
optimization based heuristic for scheduling workflow applications in 
cloud computing environments”, In Advanced information networking 
and applications (AINA), 24th IEEE international conference on, 
IEEE, pp. 400–407, 2010. 

[15] M. Z. Ali, R. G. Reynolds, “Cultural algorithms—A tabu search 
approach for the optimization of engineering design problems”, Soft 
Comput. vol. 18 no. 8 pp. 1631-1644, 2013. 

[16] S. Mirshekarian, D. Sormaz, “Correlation of Job-Shop Scheduling 
Problem Features with Scheduling Efficiency”, Expert Systems with 
Applications, Volume 62, pp. 131-147, 2016. 

[17] M. A. Rodriguez, and R. Buyya, “Deadline Based Resource 
Provisioning and Scheduling Algorithm for Scientific Workflows on 
Clouds”, in IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 
222-235, April-June 2014. 

[18] J. Huang, “The workflow task scheduling algorithm based on the GA 
model in the cloud computing environment”, JSW 9, pp. 873–880, 
2014. 

[19] H. Topcuoglu, S. Hariri and M. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing”, in the IEEE 
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 
260-274, 2002. 

[20] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. 
Vahi, “Characterizing and Profiling Scientific Workflows”, Future 
Generation Computer Systems, vol. 29, no. 3, pp. 682-692, 2013. 

Figure 5: Cloud virtual machine utilization. 

106


