
iCATS: Scheduling Big Data Workflows in the Cloud Using Cultural Algorithms
Seyed Ziae Mousavi Mojab

Department of Computer Science
Wayne State University

Detroit, Michigan
mousavi@wayne.edu

Mahdi Ebrahimi
Department of Math. and

Computer Science
Lawrence Tech. University

Southfield, Michigan
mebrahimi@ltu.edu

 Robert G. Reynolds
Department of Computer Science

Wayne State University
Detroit, Michigan

reynolds@cs.wayne.edu

Shiyong Lu
Department of Computer Science

Wayne State University
Detroit, Michigan

shiyong@wayne.edu

Abstract— Workflow scheduling has remained a critical
functionality of modern data-centric workflow management
systems. Cloud computing, which provides practically unlimited
computing and storage resources, has enabled a new generation
of data-centric workflows, called big data workflows. New big
data workflow scheduling algorithms should optimally utilize
the characteristics of cloud computing such as heterogeneous
virtual machines, the elastic resource provisioning model, and
the pay-as-you-go pricing model, as well as the time and
monetary cost to transfer large amounts of data. In this paper,
we consider one case of the general big data workflow
scheduling problem where a deadline, , is given for a workflow,
W, and the goal is to minimize the monetary cost of running W
in the cloud while satisfying the given deadline, . To this end,
we leverage the power of Evolutionary Algorithms (EA) in order
to search for the best solution within a reasonable planning time.
More specifically, we introduce an innovative fitness function
that combines the time and monetary cost of a workflow in one
metric. Based on the EA and the fitness function, we design a
deadline-constrained big data workflow scheduling algorithm,
called iCATS (Improved Cultural Algorithms-based Task
Scheduling). Extensive experiments demonstrate the statistical
advantages of iCATS over existing representative EA workflow
scheduling algorithms, including random (Rand), Genetic
Algorithms (GA), Particle Swarm Optimization (PSO), and
Cultural Algorithms (CA).

Keywords- big data workflows; Cultural Algorithms; workflow
scheduling; cloud computing; evolutionary algorithms.

I. INTRODUCTION
Workflow scheduling is a key component of workflow

management systems [1, 2, 3, 4]. The challenges of big data
in terms of volume, variety, and velocity, and the potential
unleashed by cloud computing [5] in the provisioning of
practically unlimited computing and storage resources
brought about active research on a new generation of data-
centric workflows, called big data workflows [6, 7].
Currently, three lines of research are being pursued for big
data workflow scheduling in the cloud. The first is the
category of deadline-constrained workflow scheduling [4, 8].
The second is that of budget-constrained workflow
scheduling [6, 9]. And the third line of research considers
both the budget and deadline constraints [11, 12], and
attempts to optimize both based on some tradeoffs between
the two [1, 3]. In this research, the focus is on the design and
implementation of a workflow scheduling algorithm for
deadline-constrained big data workflow applications. Several

challenges must be addressed in order to solve a deadline-
constrained big data workflow scheduling problem:

First, given two schedules sch1 and sch2 for a workflow
W, what performance metric should be used to compare the
quality of the two schedules?

Second, cloud computing uses an elastic resource
provisioning model, so the workflow scheduling algorithm
not only needs to decide the mapping and scheduling of
individual workflow tasks, but also make decisions on cloud
virtual machine provisioning and deprovisioning.

Third, cloud computing uses the pay-as-you-go pricing
model. For cloud computing, we need to consider monetary
cost in addition to other Quality of Service (QoS)
requirements such as makespan to compute cost.

Finally, one should consider the data transfer time, which
can be significant for big data workflows.

In this paper, we leverage the power of EA [13] to search
for the best solution within a reasonable time. Furthermore,
we introduce an innovative fitness function that combines the
temporal and monetary costs of a workflow schedule.

Using EA, and innovative strategies in knowledge source
(KS) exploration and exploitation, we design a deadline-
constrained big data workflow scheduling algorithm, called
iCATS (Improved Cultural Algorithms-based Task
Scheduling). Extensive experiments demonstrate the
advantages of iCATS over existing representative workflow
scheduling algorithms, including Random, GA [12], PSO
[14], and CA [15].

The rest of the paper is organized as follows. First, in
Section II, we provide some background information on
workflow scheduling and Cultural Algorithms. Section III
presents related work. In Section IV, we define and formalize
our cloud-based workflow system model. In Section V, we
describe our workflow scheduling algorithm, iCATS, in
detail. Then, in Section VI, the experimental results are
shown and discussed. Finally, the conclusions and future
work are presented in Section VII.

II. BACKGROUND

A. Workflow Scheduling
The big data workflow scheduling problem is related to

the Flow-Shop scheduling, which is a special case of the Job-
Shop scheduling problem [16]. The Job-Shop scheduling
problem aims to minimize the makespan by assigning n
independent jobs of varying processing times to m machines
of varying processing power. The Flow-Shop scheduling

99

2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService)

978-1-7281-0059-3/19/$31.00 ©2019 IEEE
DOI 10.1109/BigDataService.2019.00020

problem, in addition, imposes an order on the execution of
the n jobs. In contrast, the big data workflow scheduling
problem needs to consider not only the precedence order
between jobs, but also the data transfer between them, which
might be large in volume. In addition, we need to consider
the characteristics of cloud computing, especially the elastic
virtual machine provisioning model, in which the pool of
computing virtual machines is dynamic. This elastic nature of
cloud computing introduces a new opportunity but also a
challenge since it requires consideration of user-driven QoS
constraints, such as budget, deadline, reliability, and security.

In general, a big data workflow scheduling algorithm
needs to make four kinds of decisions:
1) Virtual machine provisioning and deprovisioning: how

many VMs do we need and what types? When do we
need to provision and deprovision these VMs?

2) Task mapping: on which VM should a workflow task T
be running?

3) Task scheduling: after a task T is mapped to a VM, the
system needs to decide when to run T on VM.

4) Data transfer scheduling: the system needs to decide
when a dataset D needs to move from one VM to another.

B. Cultural Algorithms
One of the evolutionary computational systems that

simulates social evolution is the Cultural Algorithms (CA)
proposed by Reynolds [13, 15]. Due to its nature, culture can
be viewed as a complex adaptive system, in which different
heterogeneous agents are working together and interacting
with the environment. This interaction of intelligent agents
can result in higher-level behaviors that can be applied to the
solution of problems at different ranges of temporal and
spatial complexity.

CA can be conceptualized as a knowledge intensive
evolutionary search process. While a heuristic can be viewed
as a shortcut to a solution, a meta-heuristic like GA searches
through a space of heuristics to find an appropriate one. A
Cultural Algorithm is a hyper-heuristic that employs problem
related knowledge to search through a space of meta-
heuristics to find an optimal social configuration.

In traditional methods of Evolutionary Computation there
was no implicit or explicit mechanism for storing and
transmitting the knowledge from one generation to another.
As a competitive advantage, CA provides an explicit
mechanism for selecting, storing, and evolving the knowledge
during a typical search. CA, as a dual-inheritance system, has
two major components: the Population Space and the Belief
Space [13] that are able to evolve in parallel. In addition to
those two components, there is a communication protocol that
allows the Belief Space and the Population Space to interact
with each other and exchange their knowledge (Figure 1).

In each generation, individuals in the Population Space are
first evaluated with an objective function obj(). An
acceptance function accept() is then used to determine which
individuals will be allowed to update the Belief Space.
Experiences of those chosen individuals are then added to the
contents of the Belief Space via function update(). The Belief
Space can be viewed as a network of knowledge sources.
Thus, an update to one knowledge can be propagated to other

knowledge sources in the network. For the workflow
scheduling application described here the Belief Space is
comprised of three knowledge sources as follows:

• Normative knowledge: it is used to store the highest
and lowest values for different numeric attributes.

• Situational knowledge: it contains the best exemplar
(Elite) found in each generation of the population.

• Domain knowledge: it consists of fitness values of
the individuals and gets updated in every iteration.

Knowledge from the Belief Space can influence the
selection of individuals for the next generation of the
population, analogous to the evolution of human culture,
through the influence() function. This supports the idea of dual
inheritance in that the Population Space and the Belief Space
are updated at each step based upon feedback from each other.
The influence of the knowledge sources updates the
knowledge of an individual in the social fabric or network.
The CA repeats this accept-update and influence process for
each generation until the termination condition is met.

III. RELATED WORK
Several evolutionary approaches have been proposed to

solve workflow scheduling problem in the cloud [12, 14].
One category of approaches is based on particle swarm
optimization (PSO) [14, 17]. They can be single- or multi-
objective optimization tools with the goal of minimizing the
total of workflow execution cost. Genetic Algorithms (GA)
have also been proposed to address the problem of workflow
scheduling in cloud computing [12, 18]. In these approaches,
chromosomes represent the encoding of the cloud computing
virtual machines and workflow task assignments. Knowledge
produced during search resides in the chromosome structures.
If a top performer is modified, it may mean that the
knowledge is no longer carried in the population. Individuals
carry the burden of accumulated knowledge in their
chromosomal structures.

CA represents a knowledge intensive approach such that
the knowledge collected by a population is subsequently
transferred into the Belief Space. Thus, while a top performer
is modified, information about its performance still resides in
the corresponding Belief Space. Traditionally in a CA, the
KSs compete with each other to generate improved
individuals in the population in the spirit of “survival of the
fittest”. The KS that generates more fit individuals in the
population is more likely to be used.

What differentiates iCATS from the traditional approach
is that it allows KSs in the Belief Space to cooperatively
produce new individuals as well. This set of individuals is

Figure 1: Cultural Algorithms [13].

100

called the Comprehensive Elite since it takes elite members
from Situated Knowledge and combines them with
knowledge from other sources such as normative knowledge
to generate a combined generalized solution. This approach
is applied and compared to the existing approaches above.

Another category of workflow scheduling algorithms is
the cluster-based. For cluster-based workflow scheduling
algorithms [10, 11], the goal is to minimize the total data
movement between clusters by possibly assigning similar
workflow tasks into the same cluster. Workflow tasks can be
clustered based on either their execution times or the data
movement sizes. For list-based workflow scheduling
algorithms [19], workflow tasks are ranked and sorted based
on their execution times and data dependencies. Then, the
ranked tasks are assigned to the cloud virtual machines for
execution.

In our previous work [8, 9], we proposed cluster-based
scheduling algorithms in a heterogeneous cloud computing
environment. We have used single-objective workflow
scheduling optimization and considered the deadline and
budget separately as the QoS constraints.

IV. SYSTEM MODEL
To execute a big data workflow in the cloud, we need to

model the cloud and big data workflow first. A cloud
computing environment is modeled as follows:

Definition 4.1 (Cloud Computing Environment C): A
cloud computing environment C is a 7-tuple C(VMT, VMI,
Type, VMC, VPrice, DTR, DPrice), where:

• VMT is a set of virtual machine types, each individual
virtual machine type is denoted by VMTj.

• VMI is a set of virtual machine instances, each virtual
machine instance is denoted by VMIi.

• Type: VMI VMT is the virtual machine type
function. Type(VMIi) returns the virtual machine type
of instance VMIi.

• VMC: VMT R+ is the virtual machine capacity
function. VMC(VMTj) returns the computation speed
of virtual machine type VMTj in terms of MIPS
(Million Instructions Per Second). R+ is the set of all
real positive numbers.

• VPrice: VMT R+ is the virtual machine cost
function. VPrice(VMTj) returns the monetary cost for
using a virtual machine of type VMTj in terms of US
dollars per hour.

• DTR: VMI × VMI R+ is the data transfer rate
function. DTR(VMI1, VMI2) returns the network
bandwidth between VMI1 and VMI2 in terms of
MBytes per second.

• DPrice: VMI × VMI R+ is the data transfer cost
function. DPrice(VMI1, VMI2) returns the monetary
cost of transferring data from VMI1 to VMI2 in terms
of US dollars per MB.

Definition 4.2 (Big Data Workflow W): A big data
workflow is modeled as a 4-tuple W = (T, D, TSize, DSize),
where:

• T is a set of tasks in the workflow W. Each individual
task is denoted by Tk.

• D ⊆ T × T is a set of data dependency edges among
tasks. Dk1, k2 denotes the data dependency from Tk1 to
Tk2.

• TSize: T R+ is the task size function. TSize(Tk)
returns the size of task Tk in terms of million
instructions to measure the workload of the code for
task Tk.

• DSize: D R+ is the data size function. DSize(Dk1,k2)
returns the size of the data product Dk1,k2 that is
produced by Tk1 and consumed by Tk2 in terms of
MBytes.

In order to execute a big data workflow W in a cloud
computing environment C, each workflow task should be
mapped to a cloud virtual machine instance. We define the
task mapping function, M, as follows:

Definition 4.3 (Task Mapping M): Suppose there are I
virtual machine instances and K workflow tasks, a task
mapping is represented by a K-element vector M such that
M(k) indicates the virtual machine instance to which Tk is
mapped. Figure 2 shows a workflow with five tasks, T1 - T5,
mapped to three cloud virtual machine types, VMI1, VMI2, and
VMI3. Here, the task mapping is M = <1, 2, 1, 2, 3> means
tasks T1, and T3 are mapped to virtual machine instance VMI1
(M(1)= M(3) = 1), tasks T2 and T4 are mapped to virtual
machine instance VMI2 (M(2) = M(4) = 2), and task T5 is
mapped to virtual machine instance VMI3 (M(5)= 3).

We define a big data workflow graph as a weighted DAG
that includes a set of tasks and their data dependencies. The
weights of the tasks and data edges are based on the average
task computation and average data transfer time, respectively.
A big data workflow graph can be defined formally as:

Definition 4.4 (Big Data Workflow Graph G): Given a
workflow W in a cloud computing environment C and task
mapping M, a big data workflow graph G is modeled as a
weighted directed acyclic graph with a 7-tuple G(T, D, M,
TCT, DTT, TCC, DTC), where:

• The vertices of the graph represent a set of tasks T.
• The edges of the graph represent a set of data

dependencies D.
• M is a task mapping in the cloud.
• TCT: T×M R+ is the task computation time

function. TCT(Tk, M) returns the computation time of
Tk on virtual machine M(k). It is defined as:

• DTT: D×M R+ is the data transfer time function.
It returns the data transfer time of Dk1,k2 from virtual

Figure 2: An example of workflow task mapping in the cloud.

101

machine M(k1) to virtual machine M(k2). It is defined
as:

• TCC: T × M R+ is the task computation cost
function. TCC(Tk, M) returns computation monetary
cost of Tk on virtual machine M(k). It is defined as:

• DTC: D × M R+ is the data transfer cost function;

It returns the data transfer monetary cost of Dk1,k2 from
virtual machine M(k1) to virtual machine M(k2). It is
defined as:

Once each workflow task is assigned to some cloud virtual

machine instances then, the workflow scheduler will specify
the actual execution start time and finish time of each
workflow task. We denote Tentry as the first task and Texit as the
end task of a workflow. The actual start time is defined as
follows:

Definition 4.5 (Actual Start Time AST): Given a
workflow graph G and task mapping M the actual start time
of Tk on a virtual machine M(k), denoted by AST(Tk, M), is
the actual start time when all predecessors of task Tk have
completed their executions and all input data have arrived at
virtual machine M(k). It is officially defined as:

where:

 and .

Definition 4.6 (Actual Finish Time AFT): Given a
workflow graph G and task mapping M, the actual finish time
of Tk, denoted by AFT(Tk, M), is defined as:

Workflow makespan is the total time needed to execute
the whole workflow starting from the beginning task, Tentry
through the end task, Texit. Our goal is to come up with an
optimal workflow schedule such that the workflow execution
cost is minimized while the workflow makespan meets the
given deadline. We define the makespan and cost as follows:

Definition 4.7 (Workflow Makespan WMS): Given a
workflow graph G in a cloud computing environment C and

task mapping M, the total execution time of the workflow
denoted as WMS, is defined as:

Definition 4.8 (Workflow Execution Cost WCO):
Given a workflow graph G in a cloud computing environment
C and task mapping M, the total execution cost of the
workflow, denoted as WCO, is defined as:

iCATS is an evolutionary algorithm that operates on a set
of scheduling solutions in a population. In order to evaluate
each generated solution, one must define a quality or fitness
function. We formally define our fitness function as follows:

Definition 4.9 (Fitness Score): Suppose WMS is the
makespan, WCO is the cost, and is the provided deadline.
The fitness score is defined as:

where, maxCost is the workflow execution cost once we map
all the workflow tasks into the most expensive (the fastest)
cloud virtual machine. A fitness score between 0 - 1 is
produced for each generated scheduling solution. If the
makespan of a scheduling solution is greater than the deadline
, (WMS >), then its score will be between [0 - 0.5]. And,

if a solution meets the deadline (WMS) then its score will
be between [0.5 - 1]. In this case, the closer the fitness score
to 1, the better the scheduling solution. Therefore, we define
our scheduling problem as follows:

Definition 4.10 (Workflow Cost Minimization): Given
a workflow W in a cloud computing environment C, task
mapping M, and deadline , the deadline-constrained
scheduling problem is formalized to search for the optimal
task mapping, Mopt as:

In the next section, we present a cultural algorithms based
method called iCATS to search for the optimal task mapping
Mopt in the space of all possible task mappings.

V. THE ICATS ALGORITHM
In this paper, we propose a new big data workflow

scheduling under deadline constraints using an improved
version of the Cultural Algorithms (iCATS). The improved
version of Cultural Algorithms employs a novel mechanism
of synthesizing a globally optimal solution called
Comprehensive Elite. The Comprehensive Elite is unique to
our approach in that it allows for multiple knowledge sources
to collaborate in the generation of a new population of
individuals. The experimental results will show the
competitive advantage of our approach over competitors.

Algorithm 1 presents the iCATS algorithm. Workflow W,
deadline , virtual machines specifications VM, and iCATS

102

configurations CC are the four required inputs for iCATS.
iCATS returns a near-optimal scheduling solution with the
least execution cost as a set of records (<task, virtual machine
number, actual start time, actual finish time>) for all the
workflow tasks. In addition, the solution has the records of
both provisioning and deprovisioning of the virtual machines.
After parsing the workflow specification and generating the
weighted DAG, the maxCost is calculated. iCATS creates the
Belief Space configuration and produces the initial
population from a uniform random distribution. Then, it
assesses the performance of each individual solution using
the fitness function (Definition 4.9). In the next step, iCATS
selects the top performing individuals and updates the Belief
Space and makes the Comprehensive Elite.

 Next, iCATS generates a new population by using the
influence function, based on the knowledge available in the
Belief Space (lines 10-23). The influence function, in fact,
causes individuals to evolve within a range found in the
normative knowledge and to move toward the best exemplar
found in the situational knowledge. iCATS then computes the
makespan, and cost for each solution of the newly generated
population. In order to increase the diversity of scheduling
solutions, iCATS applies both crossover and mutation
operators to some randomly selected solutions (line 24). In
line 25, the Comprehensive Elite is added to the population.
Then the fitness score of each new individual solution is
calculated in line 26. In lines 29-32, iCATS generates the
scheduling solution sch, based on the task mapping
information M, and cloud virtual machine configuration.
iCATS inserts the deprovisioning records into the scheduling
solution as well (lines 33-36). These records represent what
and when the idle virtual machines should be released.
Finally, iCATS returns the best workflow scheduling solution
as well as the corresponding makespan and cost (line 37).

iCATS calls Update_BLF() function to update the Belief
Space. Update_BLF() is presented in Algorithm 2. In a loop
(lines 1-15), both the Situational and Normative knowledge
are determined based on the population of elites. In lines 2-4,
if the fitness score of the solution is better than the Situational
fitness score then the Situational knowledge is replaced with
the best solution found in the Elites. In the next step, the
VMmin and VMmax for each task (range of virtual machines
used for each task) are specified. In addition, the
corresponding fitness score as the lower bound and the upper
bound are specified (lines 5-14). In line 16, the range of
virtual machines used for each task in the Elites are computed
and finally the updated Belief Space is returned (line 17).

 iCATS also calls makeCompElite() to create the
comprehensive Elite using different sources of knowledge
available in the Belief Space. In line 1, an empty solution is
created. In line 2, the list of Elites are sorted based on their

Algorithm 1: iCATS
Input: Workflow W, Deadline , Virtual machines specifications VM,
iCATS configurations CC
Output: The optimal workflow scheduling solution sch, and the
corresponding makespan, and cost

Begin
1. Situational_K {}; Normative_K {};
2. BLF {Situational_K, Normative_K}; // Create the Belief Space
3. List_BestSolutions {Situational_K};
4. Randomly generate the initial population Pop, and calculate the fitness
score of each individual solution.
5. While termination condition not reached do
6. Pop_Elites rank solutions based on their fitness score, and choose
the top performers
7. BLF Update_BLF(BLF, Pop_Elites); //Alg. 2
8. CompElite makeCompElite(BLF, Pop_Elites, CC.nElites); //Alg. 3
9. List_BestSolutions BLF.Situational_K
10. dx = 0; // step size
11. For i = 1 to CC.Pop_size do
12. For j = 1 to W.num_Tasks do
13. dx = round(BLF.Normative_K.Size[j] × rnorm(1));
14. If (Pop[i].VM[j] < BLF.Situational_K.VM[j]) then
15. dx = abs(dx);
16. ElseIf (Pop[i].VM[j]>BLF.Situational_K.VM[j]) then
17. dx = -1 × abs(dx);
18. End If
19. Pop[i].VM[j] Pop[i].VM[j] + dx;
20. End For
21. Pop[i].Makespan Makespan(Pop[i]);
22. Pop[i].Cost Cost(Pop[i]);
23. End For
24. Apply crossover and mutation to randomly selected individuals.
25. Pop Pop CompElite
26. Calculate the fitness score of each new individual solution
27. End While
28. M BLF.Situational_K; // add the best solution found to M
29. For Each pair Mk in M do
30. Insert (Tk, VMj, AST(Tk, VM), AFT(Tk, VM) into schedule sch
31. Insert (Provision, VMj of VM(Tk) type, ProvisionT(VMj))
 into schedule sch
32. End For
33. For Each active VMj do
34. DeprovisionT(VMj) = The AFT of the last task assigned to VMj
35. Insert (Deprovision, VMj, DeprovisionT(VMj)) into schedule sch
36. End For
37. Return sch, makespan and execution cost of sch
End // End of algorithm

Algorithm 2: Update_BLF
Input: Belief Space BLF, Population of Elites Pop_Elites
Output: Updated Belief Space BLF

Begin
1. For i = 1 to |Pop_Elites| do
2. If (Pop_Elites[i].FScore > Situational_K.FScore) then
3. Situational_K Pop_Elites[i];
4. End If
5. For j = 1 to Pop_Elites.nTask do
6. If (Pop_Elites[i].VM[j] < BLF.Normative_K.Min[j])
7. BLF.Normative_K.Min[j] = Pop_Elites[i].VM[j];
8. BLF.Normative_K.LowerB[j] = Pop_Elites[i].FScore;
9. End If
10. If (Pop_Elites[i].VM[j] > BLF.Normative_K.Max[j]) then
11. BLF.Normative_K.Max[j] = Pop_Elites[i].VM[j];
12. BLF.Normative_K.UpperB[j] = Pop_Elites[i].FScore;
13. End If
14. End For
15. End For
16. BLF.Normative_K.Size = BLF.Normative_K.Max -
BLF.Normative_K.Min;
17. Return BLF;
End

103

 fitness scores. Then, a number of top-ranked Elites, nElites,
are selected (line 3). And the sum of their fitness scores is
calculated in line 4. In line 5, given the list of top-ranked
Elites, the frequency of each VM, is computed per column.
In line 6-18, for each task, the normalized relative frequency
for each VM is calculated. In this loop a VM with the highest
normalized frequency is selected and assigned to the
corresponding task in the comprehensive Elite. At the end, in
line 19, the Comprehensive Elite is returned.

VI. EXPERIMENTAL RESULTS
In this section, we present and discuss the experimental

results and compare iCATS with the other competitive
evolutionary workflow scheduling approaches.

A. Performance Evaluation
 We compare the performance of iCATS with Random,

GA, PSO, and CA approaches on selected workflow
scheduling problems. In order to evaluate and compare the
performance of these approaches, we use four synthetic
workflow applications based on real scientific workflows
named: Montage, CyberShake, Epigenomics, and LIGO
Inspiral (Figure 3) [20]. These workflow applications are
developed for various scientific domains such as
bioinformatics and earthquake data sets. We select different
sizes of these workflow applications. We assume each task
can be executed on every cloud virtual machine. Each type of
cloud virtual machine consists of an hourly cost for virtual
machine utilization and the execution time is based on the
complexity level of the analytics workload.

In Tables 1 and 2, we list the information of workflow
tasks and virtual machines used in our experiments. Table 2
includes empirical data of ten cloud virtual machine types
with their computation capacities and the associated costs
adopted from Amazon EC2. In this list, the first virtual
machine type, VM1, is the slowest and cheapest option and

TABLE 1: DEFAULT SETTINGS USED IN THE EXPERIMENTS.
of workflow Tasks

of instructions in a Task
Data size (MB)

of virtual machines
Population size

Maximum generation
Crossover probability
Mutation probability
Maximum iteration
Number of Elites

25-5000
1000 - 10000

0.1 - 100
10

100 - 500
70 - 100
0.8 - 0.9
0.1 - 0.2

200
0.2 × Pop

virtual machine of type VM10 is the fastest and the most
expensive option in terms of cost.

We demonstrate the performance of Random, GA, PSO,
CA, and iCATS approaches in terms of the workflow
execution cost and makespan defined in section IV. In our
experiments, we assume the data transfer rates among all
virtual machine types are fixed.

B. Results and Analysis
iCATS was evaluated against the other four approaches,

Random, GA, PSO, and CA, using four distinctive workflow
applications. The comparisons were compared with different
levels of workflow complexity and with different provided
deadlines. We did the experiments by varying the complexity
of the workflows in term of the number of tasks and presented
the results of cost parameter.

Algorithm 3: makeCompElite
Input: Belief Space BLF, Population of Elites Pop_Elites, Number of
Elites to choose CC.nElites
Output: Comprehensive Elite CompElite
Begin
1. CompElite [];
2. Rank the Elites decreasingly based on their fitness scores
3. topElites Select CC.nElites number of top-ranked Elites
4. totalFscore sum(topElites.Fscores);
5. freqMatrix calcFrequency(topElites); //Calculate VMs’ frequency
per column.
6. For i = 1 to nTask do
7. VM_Score 0;
8. For j = 1 to CC.nElites do
 // calculate the normalized relative frequency
9. VM_freq find_VM_Freq(freqMatrix, topElites[j].VM[i]);
10. Relative_freq VM_freq/CC.nElites;
11. Normalized_VM (Relative_freq × topElites[j].Fscore) /
totalFscore;
12. If (Normalized_VM >= VM_Score) then
13. Best_VM topElites[j].VM[i]; // Record the VM number
14. VM_Score Normalized_VM; // Update VM_Score
15. End If
16. End For
17. CompElite.VM[i] Best_VM;
18. End For
19. Return CompElite;

TABLE 2: CLOUD VIRTUAL MACHINE TYPES USED IN THE
EXPRIMENTS.

VM
Type

Million Instructions
per second (MIPS)

Data Transfer
(MB/S)

Cost per
Hour ($)

VM1 50 10 0.095
VM2 200 25 0.38
VM3 300 35 0.57
VM4 450 50 0.76
VM5 600 65 0.95
VM6 700 80 1.14
VM7 750 95 1.26
VM8 850 110 1.57
VM9 1000 125 2.16
VM10 1200 140 2.48

Figure 3: The structure of scientific workflows [20].

104

We compared the results of all five approaches and have
demonstrated the relative cost minimizations by varying the
number of workflow tasks from 25 to 5000. In Figure 4, we
show the workflow execution cost in terms of dollar by
varying the number of workflow tasks and fixing the number
of virtual machines to 10. In these experiments, sufficient
deadlines were provided to execute each workflow as there
are some cases that the provided deadlines are not enough to
complete the workflow. The workflow execution costs are
increased by increasing the number of workflow tasks over
all four strategies.

When compared to other workflows, CyberShake
workflow has a relatively simpler structure and consequently
the results of the different scheduling algorithms appear to be
very similar. It can be seen that iCATS algorithm
outperforms Random, GA, PSO, and CA approaches. This
results in greater improvement margin with a greater number
of workflow tasks. In the next step, we compared the cloud
virtual machine utilization of the five approaches (Figure 5).
We calculated the workflow makespans by varying the
numbers of workflow tasks for all the four workflow
applications. From the figure, we can observe iCATS
exhibited statistically better performance when compared to
the other approaches across all four categories of workflow
applications and all sizes of each. iCATS has efficiently
utilized the max provided deadline to minimize the workflow
total execution cost. In addition, as the size of each of the four
workflow applications was increased, the iCATS system was
observed to be less affected by the problem increases in all

cases across all problems. This is a particularly good trait for
a scheduler in the cloud since environments and problem
sizes can change dramatically over time.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a new evolutionary workflow

scheduling algorithm by adopting an improved version of
Cultural Algorithms by allowing different knowledge sources
to collaborate on a new solution. The goal was to minimize
the workflow execution cost while meeting the specified
deadlines. We compared our strategy with Random, GA,
PSO, and CA approaches.

The results of the comparison illustrate the performance
advantages of iCATS approach. Our main contributions are
1- adopting CA to design the novel workflow scheduling
solution; 2- improving CA performance by adding a
comprehensive solution (Comprehensive Elite) to the
population; and 3- defining a new fitness function to consider
both workflow makespan and execution cost in one formula.
In the future, we plan to improve the performance of our
strategy by adopting a novel rule-based Cultural Algorithms
with improved heuristic to find the optimal scheduling
solutions. In addition, we will compare iCATS with more
existing scheduling algorithms. Also, there will be situations
when a multi-objective problem needs to be addressed. The
extension of Cultural Algorithms to multi-objective problems
will be considered as well. It will be of interesting to see how
the iCATS algorithm is able to accommodate scaling up for
those types of problems.

Figure 4: Comparisons of Workflow Execution Cost.

105

ACKNOWLEDGMENT
This work is supported by National Science Foundation,

under grant NSF ACI-1738929 and 1747095.

REFERENCES
[1] C. Lin, and S. Lu, “SCPOR: An elastic workflow scheduling algorithm

for services computing”, pp. 1-8, SOCA 2011.
[2] J. Liu, E. Pacitti, P. Valduriez, D. Oliveira, and M. Mattoso, “Multi-

objective scheduling of Scientific Workflows in multisite clouds”,
Future Generation Comp. Syst. 63, pp. 76-95, 2016.

[3] H. Arabnejad, and J. G. Barbosa, “Multi-QoS constrained and Profit-
aware scheduling approach for concurrent workflows on
heterogeneous systems”, Future Generation Comp. Syst. 68, pp. 211-
221, 2017.

[4] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-
constrained workflow scheduling algorithms for Infrastructure as a
Service Clouds”, Future Generation Comp. Syst. 29(1), pp. 158-169,
2013.

[5] F. Ian, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared”, In Grid Computing Environments
Workshop, 2008. GCE'08, pp. 1-10, IEEE, 2008.

[6] C. Q. Wu, and H. Cao, “Optimizing the Performance of Big Data
Workflows in Multi-cloud Environments Under Budget Constraint”,
SCC, pp. 138-145, 2016.

[7] F. Llwaah, J. Cala, N. Thomas, “Simulation of Runtime Performance
of Big Data Workflows on the Cloud”, EPEW, pp.141-155, 2016.

[8] M. Ebrahimi, A.Mohan, and S. Lu, “Scheduling Big Data Workflows
in the Cloud under Deadline Constraints”, in Proc. of the IEEE
International Conference on Big Data Computing Service and
Applications (BigDataService 2018), pp. 33-40, 2018.

[9] A. Mohan, M. Ebrahimi, S. Lu, A. Kotov, “Scheduling Big Data
Workflows in the Cloud under Budget Constraints”, in Proc. of the
IEEE Scalable Cloud Data Management Workshop, in conjunction
with IEEE Conference on Big Data, pp. 2775-2784, 2016.

[10] K. Bochenina, N. Butakov, A. Dukhanov, and D. Nasonov, “A
clustering-based approach to static scheduling of multiple workflows

with soft deadlines in heterogeneous distributed systems”, in Proc. Of
the Procedia Computer Science 51, pp. 2827-2831, 2015.

[11] A. Deldari, M. Naghibzadeh, S. Abrishami, and A. Rezaeian, “A
Clustering Approach to Scientific Workflow Scheduling on the Cloud
with Deadline and Cost Constraints”, in Proc. of the Amirkabir
International Journal of Modeling, Identification, Simulation &
Control 46.1, pp. 19-29, 2014.

[12] J. Yu, and R. Buyya, “Scheduling scientific workflow applications
with deadline and budget constraints using genetic algorithms”, in
Proc. of the Scientific Programming, v.14 n.3,4, pp. 217-230, 2006.

[13] R. G. Reynolds, and B. Peng, "Cultural algorithms: Modeling of how
cultures learn to solve problems", Proc. 16th Int. Conf. Tools Artif.
Intell. (ICTAI) pp. 166-172, 2004.

[14] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization based heuristic for scheduling workflow applications in
cloud computing environments”, In Advanced information networking
and applications (AINA), 24th IEEE international conference on,
IEEE, pp. 400–407, 2010.

[15] M. Z. Ali, R. G. Reynolds, “Cultural algorithms—A tabu search
approach for the optimization of engineering design problems”, Soft
Comput. vol. 18 no. 8 pp. 1631-1644, 2013.

[16] S. Mirshekarian, D. Sormaz, “Correlation of Job-Shop Scheduling
Problem Features with Scheduling Efficiency”, Expert Systems with
Applications, Volume 62, pp. 131-147, 2016.

[17] M. A. Rodriguez, and R. Buyya, “Deadline Based Resource
Provisioning and Scheduling Algorithm for Scientific Workflows on
Clouds”, in IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.
222-235, April-June 2014.

[18] J. Huang, “The workflow task scheduling algorithm based on the GA
model in the cloud computing environment”, JSW 9, pp. 873–880,
2014.

[19] H. Topcuoglu, S. Hariri and M. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing”, in the IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260-274, 2002.

[20] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi, “Characterizing and Profiling Scientific Workflows”, Future
Generation Computer Systems, vol. 29, no. 3, pp. 682-692, 2013.

Figure 5: Cloud virtual machine utilization.

106

