
A Folksonomy-Based Social Recommendation System for
Scientific Workflow Reuse

Aravind Mohan, Mahdi Ebrahimi, Shiyong Lu
Wayne State University

Detroit, MI, USA
 {amohan, mebrahimi, shiyong}@wayne.edu

Abstract— In the past decade, scientific workflow systems have
significantly improved scientists' ability to structure scientific
processes, use computational resources, and analyze their data
more efficiently. Such productivity can be further enhanced by
sharing, reusing, and repurposing existing tasks and workflows
across different users and institutes. However, existing
scientific workflow systems are mainly single-user oriented
with limited sharing and reusing functionalities. To overcome
such limitations, we propose a folksonomy-based social
workflow recommendation system to improve workflow design
productivity. Our contributions are: i) We developed a web-
based workflow design environment (called Webbench) to
allow users to create workflows and collaboratively annotate
and categorize them using social tags. The resulted folksonomy
improves workflow searchability and shareability. ii) We
proposed several workflow recommendation strategies to
automatically or semi-automatically augment an in-progress
workflow, leveraging both structural and semantic similarities
between workflows and guiding information extracted from
previously created workflows in the database. iii) We
implemented the proposed environment and strategies in a
prototype based on the DATAVIEW scientific workflow
management system and validated our approach with
numerous use cases.

Keywords- Scientific workflows; folksonomy; DATAVIEW

I. INTRODUCTION
The past decade has witnessed the growing benefits of

using scientific workflow systems to improve the
productivity of designing scientific processes and data-driven
scientific discoveries in various domains, such as
bioinformatics [9], neuroinformatics [10], ecology [11],
oceanography [12], astronomy [13], and high-energy physics
[14]. However, the productivity of workflow design is still
hampered in existing scientific workflow systems in two
ways. Most existing scientific workflow management
systems are single-user oriented and thus across-user sharing
and reuse cannot be achieved within the system per se.
Meanwhile, workflow design is largely still a tedious and
error-prone process with little or no automation support.
While social scientific workflow sharing environments, such
as MyExperiment [15], greatly facilitate workflow sharing
and reuse across tools, users, and institutes, such sharing is
external to a workflow design environment and thus provides
little help to the design of an in-progress workflow.

In the meanwhile, folksonomy, the practice and method
of collaboratively creating and reusing tags to annotate and
categorize digital contents, has become a key characteristic
of Web 2.0 [3]. In contrast to a taxonomy, which has a fixed

vocabulary, a folksonomy allows each author or user to
create his or her own terms contributing to an evolving
folksonomy. Such flexibility greatly improves the
productivity of tagging and annotation and engagement of
users. As a result, more digital contents are annotated and
searchability is improved. Moreover, a folksonomy keeps
track of emerging trends in tag usage and user interests.
Therefore, it is natural to adopt folksonomies to annotate and
categorize scientific workflows.

To overcome the above limitations of existing workflow
design and sharing systems, we propose a folksonomy-based
social workflow recommendation system to improve
workflow design productivity. Our contributions are: i) We
developed a web-based workflow design environment
(called Webbench) to allow users to create workflows and
collaboratively annotate and categorize them using social
tags. The resulted folksonomy improves workflow
searchability and shareability. ii) We proposed several
workflow recommendation strategies to automatically or
semi-automatically augment an in-progress workflow,
leveraging both structural and semantic similarities between
workflows and guiding information extracted from
previously created workflows in the database. iii) We
implemented the proposed environment and strategies in a
prototype based on the DATAVIEW scientific workflow
management system and validated our approach with a case
study.

The rest of the paper is organized as follows. Section II
provides an overview of the workflow recommendation
framework. Section III introduces our folksonomy based
workflow model. Section IV presents our workflow
recommendation algorithms to recommend a suitable
workflow to augment an in-progress workflow. Section V
illustrates our implementation and experiments with a case
study. Section VI and VII present related work and
conclusions.

II. AN OVERVIEW OF WORKFLOW RECOMMENDATION
FRAMEWORK

In this section, we propose a workflow recommendation
framework to improve workflow design productivity by
recommending a suitable workflow that is both syntactically
and semantically compatible to any incomplete in-progress
workflow. In accordance with the reference architecture for
scientific workflows [7,16], we propose a workflow design
inspector, a syntactic recommender and a semantic
recommender as the core components of the workflow
recommendation framework, which are positioned in the

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.100

704

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.100

704

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.100

704

2015 IEEE International Conference on Services Computing

978-1-4673-7281-7/15 $31.00 © 2015 IEEE

DOI 10.1109/SCC.2015.100

704

Webbench and the Workflow Engine, two subsystems in the
reference architecture. In Fig. 1a, we show the system
architecture for DATAVIEW [16], which is composed of
seven loosely coupled subsystems, including the Webbench,
the workflow engine, the workflow monitor, the cloud
resource manager, the data product manager, the provenance
manager, and the task manager. In Fig. 1b, we show an
overview of the workflow recommendation framework, in
which two recommenders, the syntactic recommender and
the semantic recommender, are located in the workflow
engine and the workflow design inspector in the Webbench,
respectively.

The Webbench in Fig, 1a features an online scientific
workflow system that allows data scientists to create, edit
and run a visual scientific workflow online. In our
DATAVIEW system, we use mxGraph, a visualization
language program, for representing the workflow design.
During workflow design, every time a new workflow is
added to the workflow design panel, the workflow design
inspector extracts the list of complete and incomplete
workflows that exist in the workflow design panel. The
workflow design inspector is the key component that drives
the workflow recommendation framework. During the
workflow design process, the workflow design inspector
provides a clickable button called “Recommend Workflow”
within the incomplete workflow and sends the specification
of the incomplete workflow to the workflow engine.

The workflow engine in Fig. 1b, on the other hand,
invokes the SWL Parser to extract the specification of the
incomplete workflow that is provided by the workflow
design inspector. Specification of the workflow contains
logical details, mapping details, and physical details of the
workflow. Logical details include the workflow name, the
input, and the output ports of the workflow. Mapping details
include the mapping information that illustrates how the data
product is mapped to the input and the output port of the
workflow. Physical details include information such as the
location of the code that is embedded inside the workflow.
The syntactic recommender component accepts the
specification of the incomplete workflow and validates the
connectivity on the ports to check whether incompleteness is
on either the input side or the output side of the workflow.
Incompleteness on an input requires a producer workflow

whose output port shall be connected to the input port of the
incomplete workflow. Incompleteness on an output port
requires a consumer workflow whose input port shall be
connected to the output port of the incomplete workflow.

The syntactic recommender then performs a look up in
the workflow repository to find the list of workflows that
contains an input port that matches the output port of the
incomplete workflow. A list of workflows that match with
the port information of the incomplete workflow is then
added to the suggested workflow candidate list S that
contains both the recommended producer and consumer
workflows.

Although the list of workflows in the suggested
workflow candidate S is syntactically compatible with the
incomplete workflow, those workflows might not be
semantically relevant to the incomplete workflow nor
preferred by the user. Hence, the semantic recommender is
used to filter and identify a sublist of workflow candidates
from S that are also semantically compatible by leveraging
the tag annotations. The semantic recommender component
computes a workflow recommendation score based on both
workflow similarity score and user interest matching score
between the incomplete workflow and each of the workflows
in the suggested workflow candidates S. with that of the tags
associated with the incomplete workflow. After computing
the workflow recommendation score, we rank the workflows
based on the recommendation score and a new list of
producer and consumer workflows is added to the suggested
workflow candidate list T and finally recommended to the
data scientist.

III. A FOLKSONOMY BASED WORKFLOW MODEL
Folksonomy [1] is a classification system derived from

the practice and method of collaboratively creating and
managing tags to annotate and categorize content. As shown
in Fig. 2c, in folksonomy, a user tags a resource (e.g.
workflow) and the ternary relationship between the user, the
tag and the resource is collectively known as tag assignment
(TAS).

Fig. 1. (a) DATAVIEW architecture.

Fig. 1. (b) Workflow recommendation framework.

705705705705

As shown in Fig. 2d, TAS can be represented as a graph
consisting of a set of users, a bag of tags and a set of
workflows, thereby forming a folksonomy relationship. TAS
emphasizes both user preference and workflow tag relevance
factors. In Fig. 2b, we show the user preference, which is
used to compute how much a particular user prefers the tag
based on the user’s previous tagging activities. In Fig. 2a, we
show the workflow relevance, which is used to compute how
much a particular tag is relevant to the workflow based on
the tagging activities on the workflow.

Our previously proposed workflow model [8] contains the
syntactic information of the workflow such as name, input
port details, output port details and data mapping details.
However, it does not include any semantic information about
the workflow except the workflow name. In our new model,
we support tagging the workflow during the workflow
design process. Tags represent lightweight textual
information that provides more insights about the workflow
and more importantly it is user driven. Hence the semantic
information driven by the tags is leveraged to provide
support to the user by increasing the user’s workflow design
productivity.

Definition 1. A folksonomy is a tuple F = (U, T, W, Y)
where U, T, and W are finite sets, whose elements are called
users, tags and workflows, respectively. Y is a ternary
relation between them, i. e., Y ⊆ U × T × W, whose elements
are called tag assignments. For workflow ��� , we use
tags(���) to denote the bag of tags (duplicates are included)
annotated by all users for workflow ���. For a user ��, we
use profile(��) to represent the bag of tags that a user ��
used to annotate all workflows in the workflow repository. □

 ASSUMPTION 1: given an incomplete workflow ���
that is being created by a user ��, the rank of a workflow
��� in the recommended list of workflows is decided by two
scores, ��(���,����), the similarity matching between ���
and ���, and ��(��,����), a user profile interest matching
between user ���and workflow ���.

A scientific workflow represents a multiple-step data
analysis pipeline that chains several data analysis workflows
(e.g. Web Services, Command line applications) together via
data links, which connect the output of one workflow to the
input of another workflow. We have two types of workflow
namely, a primitive workflow, that has no subworkflows
inside it, a composite workflow, that has at least one or more
subworkflows inside it. More formally a scientific workflow
is defined as:

Definition 2. A scientific workflow W is a tuple (u, T, TS,
IP, OP) where u is the unique identifier of the user who
created W, T is a bag of tags that are assigned to W, TS is
the set of constituent subworkflows inside W, IP is the set of
input ports of W, and OP is the set of output ports of W. W
is primitive if |TS| = Ф and composite otherwise. □

The tf-idf score is widely used in the information retrieval
community to identify how important a particular word is to
a document in the collection. In our workflow model, we
refer documents as workflows and terms as tags, and hence,
the tf-idf score is used to compute how important a
particular tag is in the context of a workflow. The tf-idf
score is computed by multiplying term frequency (tf) with
inverse document frequency (idf). The term frequency (tf) is
used to compute the frequency of the particular tag ����in a
workflow �����and is computed by equation (1).

tf (����, �����) = ���� �
������� �� ���������

��� � ������� �������������
 (1)

where f(���,�����) is the raw frequerncy of tag ���in ��� .T.
The inverse document frequency (idf) is used to measure
how much common a particular tag ����is in the N number of
workflows in the workflow repository W and is computed
by the equation (2):

idf (����, �� = ��� ���

� ���������������������������
�
 (2)

tf-idf(����, �����, W) = tf (����, �����) � idf (����, �� (3)

 Fig. 2. (a) Workflow tag relevance. Fig. 2. (c) Tag assignment (ternary relationship).

 Fig. 2. (b) User tag preference. Fig. 2. (d) Folksonomy in scientific workflows.

706706706706

Given a user um and all the users U in the system, let um.T be
the bag of tags used by user um to annoate all the workflows
in W, then the tf-idf of a tag tk with respect to user um and U,

td-idf(tk, um, U), can be defined similarly.

Definition 3. Workflow Similarity WS is used to compute
the similarity between any two arbitrary workflows. Given
two workflows ����� and ��� , we represent them as two
vectors:

� ��� � �������������� �����
� ��� � �������������� �����

where ��� = tf-idf(����, �����, W), ��� = tf-idf(����, �����, W)
and n is the number of tags in T. The workflow similarity
between �����and ���� is computed by equation (4)

�� ����������� � �
�����

�
��� ��������

�����
��

��� ��� �����
��

��� �
�

 (4) □

 Based on assumption 1, a recommended workflow should
be not only similar to the incomplete workflow, but also
matching to the interest of the user um, which is characerized
by her profile to achive personalized recommendation. To
this end, we introduce the notion of user interest matching
score.
Definition 4. The User Interest Matching Score IM is used
to compute the interest matching degree between a user ���
and a workflow ���, and is defined as follows:

�� ������ � �
�����

�
��� �������

�����
��

��� ��� ������
��

��� �
�

 (5)

where ����= tf-idf(���,���� , W), ��� = tf-idf(����, �� , U)
and n is the number of tags in T. □

Definition 5. Workflow Recommendation Score WR is
used to rank the workflows that are part of the suggested
workflow candidates S provided by the syntactic
recommender component by computing the workflow
similarity and user profile similarity with respect to the
incomplete workflow. (See section 2). Based on the
workflow recommendation score computed as equation (6),
the list of workflows are added to the suggested workflow
candidates T and recommended to the user.

�� ���������������� =
������������������� � �� ����������� � � � � � �� ������ (6)

where, � is the recommendation weight factor (RWF) that is
used to balance workflow similarity score and user interest
matching score that satisfies � � �� � �. □

IV. WORKFLOW RECOMMENDATION ALGORITHMS
Our workflow recommendation framework considers both
syntactic and semantic information that are part of the
workflow in order to recommend a suitable workflow to the
incomplete workflow. As part of the workflow design
process, we provide the user with the option to annotate the
workflow by clicking on the tagging button in the workflow
design panel. As shown in Fig. 2d, the following tag
assignments are created in our user profile table during the
user annotation process.
{(u1,t1,w1), (u1,t2,w1), (u1,t2,w2), (u2,t2,w3), (u3,t2,w3),
(u4,t3,w1), (u4,t3,w3), (u4,t2,w4), (u4,t3,w4)}
As evident from the above tag assignments, in our system
different users can use the same tags to annotate the same
workflow. Also different users can use different tags to
annotate the same workflow. Because of these constraints,
we allow duplicates to be included and hence represent the
tags as bag of words.
 The syntactic workflow recommender component is
mainly used to compare the input/output ports of the
incomplete workflow with the workflows residing in our
workflow repository. The incompleteness in the workflow
occurs mainly due to the missing connection link from the
input ports of the workflow to another producer workflow
or output ports of the workflow to another consumer
workflow. Producer workflows are those workflows in
which one or more of the output ports of the workflow are
connected to one or more input ports of the incomplete
workflow. Consumer workflows are those workflows in
which one or more of the input ports of the workflow are
connected to one or more output ports of the incomplete
workflow. As shown in Algorithm1, Syntactic workflow
recommender component accepts two inputs as, incomplete
workflow and the list of workflows in the repository.
 In our DATAVIEW system, we use an XML based
workflow specification language called SWL to represent the
meta data information of the workflow. Each workflow in
our repository contains a SWL associated with it. We
implemented SWL Parser as part of the workflow engine to
parse the specification file of the workflow and get all the
input and output ports associated with the workflow. Output
of the Algorithm1 generates two sets of recommended
workflow lists for producer workflows and consumer
workflows. For each logical port in the incomplete
workflow, we compare the input ports of the incomplete
workflow to find a suitable workflow in the workflow
repository that contains at least one matching output port that
is type compatible with that of the input port of the
incomplete workflow. The workflow is then added to the list
of recommended producer workflows. We compare the
output ports of the incomplete workflow to find a suitable
workflow in the workflow repository that contains at least
one matching input port that is type compatible with that of
the output port of the incomplete workflow. The identified
workflow is then added to the list of recommended consumer
workflows. For example, in Fig. 3a we show an in-progress

707707707707

workflow that contains an incomplete composite workflow
w3, with the input port connected to another producer
workflow w2. But the output port of the workflow is not
connected to any workflow and hence we provide the user
with a workflow recommendation link. The output port of
the incomplete workflow w3 is integer type and hence we
look at the workflows in the workflow repository and
identify those workflows that contain at least one matching
port. As shown in Fig. 3b and Fig. 3c, the sample
recommended workflows wf1 and wf2 contains at least one
port of type integer. Hence both wf1 and wf2 are added to the
list of consumer workflows as part of the recommendation
list generated by the syntactic workflow recommender.
Although the workflows wf1 and wf2 are syntactically
compatible with w3, the workflows might not be relevant or
preferred by the user based on the user’s profile. So, we
identify the workflow similarity by using Algorithm2 to
compute the similarity between the vector representation of
the incomplete workflow and the vector representation of
the recommended workflows generated as output of the
syntactic workflow recommender component. In addition to
the workflow similarity, we also compute the user interest
matching score and the workflow recommendation score.
Based on the recommendation score and a system defined
threshold value, the workflow ranking is computed and the
list of suggested workflow candidates for both the producer
and consumer workflows is generated and provided to the
user. We set a system defined threshold value, so that only
those workflows that contain the recommendation score
greater than the threshold value are added to the
recommendation list.
By setting a threshold value, we avoid recommending any
workflow that has a low recommendation score to the user.
One challenge incurred during our workflow
recommendation technique is for folksonomy, both the tags
and the workflows repository are growing at a constant rate.

To address this issue, we periodically (the first day of each
month�use the snapshot of the workflow repository to
calculate a new tag vocabulary T and workflow collection D
in n dimensions with n = |T|. As shown in Fig. 3a, the
workflow w3 is a composite workflow that contains a
subworkflow inside it with the workflows w4, w5 and w6.
Further the workflow w5 is a composite workflow that
contains another subworkflow inside it with the workflows
w7, w8 and w9. So, when finding a semantically similar
workflow, we consider not only the tags associated with the

Algorithm1�����������	
���������
1:		function syntacticRecommender
2: input: incomplete workflow wi, list of workflows
 in repository Lw
3: output: list of syntactic recommended workflows
4: listOfProducerWorklows (LPW) � []
5: listOfConsumerWorklows (LCW) � []
6: for each logical port p in wi
7 if (p � IP � wi)
8: for each workflow w � Lw
9: if (p is type-compatible with at least one
 logical port p* � OP � w)
10: LPW � LPW + w
11: end if
12: end for
13: end if
14: if (p � OP � wi)
15: for each workflow w � Lw
16: if (p is type-compatible with at least one
 logical port p* � IP � w)
17: LCW � LCW + w
18: end if
19: end for
20: end if
21: end for
22: return LPW, LCW
23: end function

Fig. 3. (a) Sample incomplete composite workflow (w3).

Fig. 3. (b) Sample recommended workflow (wf1).

Fig. 3. (c) Sample recommended workflow (wf2).

Integer

708708708708

incomplete workflow, but also all the subworkflows inside
the incomplete workflow (recursively). Let us suppose the
following tag assignments are done to the workflows (w3,
w5, w7, w9, wf1, wf2) as shown in Fig. 3a, 3b, and 3c.

TABLE 1
Tag Assignment
(TAS) Table.

 As shown in TABLE 1, we compute the tf, the idf and the
tf-idf value for all the tag assignments. Then, we translate the
incomplete workflow and the workflows in the suggested
workflow candidates S into the corresponding vector
representation. For example, the vector representation of the
incomplete workflow w3 and the recommended workflow
candidates wf1 and wf2 are:
Vector (w3) = (0.54,0.84,0.21,0.54,0.63,0.84)
Vector (wf1) = (0.54, 0.28,1.14,1.14)
Vector (wf2) = (0.54,0.28,0.84,1.14)
We collect all the user profiles that contain all the tags
annotated by the user and translate the user profiles into the
corresponding vector representations. For example, the
vector representation of the user profile generated for the
user u1 (w3, wf2), u2 (w5, wf1), u3 (w7, wf2), u4 (w9) are:
Vector (u1) = (0.54,0.84,0.21,0.54,0.63,0.84,0.54,
0.28,0.84,1.14)
Vector (u2) = (0.21,0.54,0.63,0.84,0.54,0.28,1.14,1.14)
Vector (u3) = (0.63,0.54,0.28,0.84,1.14)
Vector (u4) = (0.84)
The workflow similarity between the incomplete workflow
w3 and the workflow candidate’s wf1 and wf2 is computed
by using the corresponding vector as:
WS (w3, wf1) = 0.514
WS (w3, wf2) = 0.548
The user interest matching score between the user designing
the workflow (u1) and the workflow candidate’s is
computed by using the corresponding vector as:
IM (u1, wf1) = 0.366
IM (u1, wf2) = 0.390
Intuitively, it is evident that, the workflow wf2 is relevant to
the incomplete workflow w3 and preferred by the user u1

than the workflow wf1. The final recommendation score
validates that the consumer workflow candidate wf2 (0.47) is
higher than the workflow candidate wf1 (0.44) and the
threshold value is (0.45). So, we recommend the user, wf2 as

the consumer workflow to be connected to the output port of
the incomplete workflow w3.

Algorithm2���������	
���������
 1: function semanticRecommender
 2: input: incomplete workflow ���, user ��,
list of recommended producer workflows Lrpw, list of
recommended consumer workflows Lrcw,
recommendation weight factor �, threshold value T
 3: output: list of semantic recommended workflows
 4 listOfProducerWorklows (LPW) � []
 5: listOfConsumerWorklows (LCW) � []
 6: LPW_score=0
 7: LCW_score=0
 8: for each workflow ���� � Lrpw
 9: LPW_score = � ��� ����������� � � � � �

��� ������
10: if (LPW_score > T)
11: LPW�� LPW + w
12: end if
13: end for
14: for each workflow ���� � Lrcw
15: LCW_score = � ��� ����������� � � � � �

��� ������
16: if (LCW_score > T)
17: LCW�� LCW + w
18: end if
19: end for
20: return LPW, LCW
21: end function
	

V. IMPLEMENTATION AND CASE STUDY
We implemented the proposed folksonomy based social

recommendation framework as a Web-based application
called DATAVIEW, written in Java. As part of our
implementation, we deployed our DATAVIEW in
Futuregrid's Openstack platform. We validated our proposed
Syntactic Recommender and Semantic Recommender
algorithms by designing a workflow downloaded from the
myExperiment website.

A. myExperiment Data Set
The study focuses on workflows designed in Taverna, an

open source popular workflow system. We downloaded the
workflows, the input and output port details, the number of
workflow instances, the user profile information and the tag
assignments available in myExperiment workflow
repository. The myExperiment website allows its users to
share the workflows from several domains. Based on our
analysis on the myExperiment dataset, as shown in Fig. 5a,
we found that there are 9886 users, 3542 workflows, 2664
publicly available workflows and 9624 tag assignments in
the myExperiment website.

709709709709

B. Case Study: Analyzing Metabolite Pathway
 We developed a scientific workflow analyzing metabolite
pathway. As shown in Fig. 4b, we designed the workflow
based on the taverna workflow downloaded from the
myExperiment website (see Fig. 4a) using our data
collection technique. Our workflow takes as input, the
search keyword and then searches for metabolomic
pathways that match the entered keywords and returns
information about the chosen pathway. Although there are
different ways of parallelizing scientific workflow [17], in
our system, we parallelized the execution of the scientific
workflow based on the number of workflow fragments in
the workflow specification. A workflow fragment is a
sequence of workflows that contains a source, a destination
and a data channel representing the connectivity (data flow)
between the workflows. We identified all the independent
workflow fragments in the workflow specification and
captured the workflows that are part of those workflow
fragments. Then, we executed each workflow fragment
separately by running them in different virtual machines.

 As shown in Fig. 4b, our workflow contains eight
primitive workflows and is deployed using four virtual
machines. The input data set, keyword of data type String is
sent to the virtual machine VM1, data is processed using the
Search_for_pathway, Extract_pathway_data and Choose_id
workflows and the output data set generated is sent to VM2,
VM3 and VM4 respectively. In virtual machine VM2, the
input data is processed by Fetch_pathway_image workflow
and generates an image output of type file. In virtual
machine VM3, the input data is processed by an incomplete
Fetch_pathway_description workflow, whose output port is
of type string and is not connected to any consumer
workflow or output data stub. In virtual machine VM4, the
input data is processed by Fetch_compounds,
Extract_compound_data and Fetch_compound_description
workflows and generates two outputs, compound_ids of
type list<Integer>, compound_infos of type list<String>.
The in-progress workflow contains one incomplete
workflow and we provided our users with a

recommendation link. When our users, request for
recommendation by clicking on the link, we recommended a
list of suitable consumer workflows that shall be connected
to the output port of the Fetch_pathway_description
workflow. First, we identified the list of syntactically
compatible workflows by executing our syntactic workflow
recommender to get a list of workflows that contains at least
one input port of type string and formulate the list of
syntactically compatible workflows. Second, we identified
the list of semantically compatible workflows by filtering
the list generated in the previous step and executed our
semantic workflow recommender to formulate the list of
workflows that are both relevant to the incomplete
workflow and also preferred by the user who designed the
in-progress workflow. In Fig. 5b, we show the
recommendation scores of the top 10 recommended
workflows that are suitable to be connected to the output
port of the incomplete Fetch_pathway_description
workflow. In our experiment setting, we set the threshold
value to be 0.5 and the recommendation weight factor � =
0.5.

VI. RELATED WORK
The notion of artifact reuse and recommendation is well
studied in the software engineering field. The folksonomy
based approach, in which the system provides the users with
the ability to publish and categorize various resources such
as (web pages, photos, videos, documents, etc.) online with
"social annotations" or "tags". Xu et al. [1] explore three
properties of folksonomy, namely the categorization, the

Fig. 4. (a) Taverna workflow in myExperiment; (b) Scientific workflow analyzing metabolite pathway.

Fig. 5. (a) myExperiment dataset; (b) Workflow recommendation.
score for top 10 recommended workflows.

710710710710

keyword and the structure property and propose a
personalized search framework utilizing the folksonomy. In
the information retrieval community, Hotho et al. [2]
propose a formal model and a new search algorithm for
folksonomies. Bao et al. [3] explore the social annotations
to optimize web search. In the paper, the author propose two
novel algorithms called SocialSimRank and
SocialPageRank to measure the similarity and popularity of
web pages from web users’ perspective.

In the scientific workflow community, building
visualization and workflow pipelines is a large hurdle from
the users' perspective. It is time-consuming to identify a
reusable workflow by manually scanning through more than
hundreds of workflows in the workflow repository. Koop et
al. [4] propose VisComplete, an auto-complete suggestion
technique to help users construct pipelines in the VisTrails
system. In the paper, the authors propose a technique to find
the syntactic similarity between the incomplete workflow
and the workflows in the workflow repository by sub graph
matching. Chinthaka et al. [5] propose a case-based
reasoning approach to assist composition of workflows
using the Lesk algorithm to perform the keyword matching
between the input and output of the incomplete workflow
and the workflows in the workflow repository. Zhang et al.
[6] propose an approach to recommend services in the
workflow composition process. In the paper, the author
models existing scientific artifacts, services and workflows
as a PSW network and recommends services based on the
service usage history.

None of the above techniques address the workflow reuse
problem using the syntactic and semantic information
available in the workflow specification file. Further the
above techniques do not address the scientific workflow
reuse in the granularity of recommending the producer and
consumer workflows based on the input and output port type
matching. Our technique validates the port types to
recommend syntactically compatible workflows. Next, we
leverage the user profile and the tags associated with the
incomplete workflow and the workflows residing in the
workflow repository to recommend a suitable workflow that
is both relevant and preferred by the user to be a producer or
consumer of the incomplete workflow.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we first developed a workflow

recommendation framework to recommend the list of
syntactically and semantically compatible workflow
candidates and thereby improve the scientific workflow
design productivity of the user. Second, we presented a
folksonomy based workflow model to extend our previously
proposed primitive workflow model that emphasizes on the
semantic information in a workflow. Third, we proposed two
workflow recommendation algorithms, to capture the social
annotations' capability on syntactic and semantic workflow
recommendation respectively. Finally, we implemented the
proposed environment and strategies in our DATAVIEW
system and validated our approach with a case study and

experimental results. Ongoing work includes extending our
recommendation framework to support a proactive, system
driven recommendation approach to provide
recommendations for all the incomplete workflows in an in-
progress workflow.

ACKNOWLEDGMENT
This work is supported by U.S. National Science
Foundation under ACI-1443069 and is based upon work
supported in part by the National Science Foundation under
Grant No. 0910812.

REFERENCES
[1] S. Xu, et al., “Exploring folksonomy for personalized search,” in

Proc. of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval (SIGIR'08), pp.
155-162.

[2] A. Hotho, et al., “Information retrieval in folksonomies: search and
ranking,” in Proc. of the 3rd European conference on The Semantic
Web: research and applications (ESWC'06), Springer-Verla. pp. 411-
426.

[3] S. Bao, et al., "Optimizing web search using social annotations," in
Proc. of WWW ’07, pp. 501–510.

[4] D. Koop, et al., "VisComplete: Automating Suggestions for
Visualization Pipelines," IEEE Transactions on Visualization and
Computer Graphics, vol.14, no. 6, pp. 1691, 2008.

[5] E. Chinthaka, et al., "CBR Based Workflow Composition Assistant,"
in Proc. of 2009 World Congress on Services (SERVICES-I), IEEE
Computer Society. pp. 352-355.

[6] J. Zhang, et al., "Recommend-As-You-Go: A Novel Approach
Supporting Services-Oriented Scientific Workflow Reuse," in Proc.
of the 2011 IEEE International Conference on Services Computing
(SCC'11), pp. 48-55.

[7] C. Lin, et al., "A Reference Architecture for Scientific Workflow
Management Systems and the VIEW SOA Solution," IEEE
Transactions on Services Computing, vol.2, no. 1, pp. 77-92, 2009.

[8] A. Mohan, et al., "Addressing the Shimming Problem in Big Data
Scientific Workflows," in Proc. of the 2014 IEEE International
Conference on Services Computing (SCC'14), pp. 347-354.

[9] J. Li, et al., "A bioinformatics workflow for variant peptide detection
in shotgun proteomics," Molecular & Cellular Proteomics 10.5
(2011): M110-006536.

[10] K. Fissell. "Workflow-based approaches to neuroimaging analysis,"
Neuroinformatics. Humana Press, pp. 235-266, 2007.

[11] W. Michener, et al., "Data integration and workflow solutions for
ecology," Data integration in the life sciences. Springer Berlin
Heidelberg, pp. 321-324, 2005.

[12] R.S. Barga, et al., "Trident: Scientific Workflow Workbench for
Oceanography," SERVICES I, pp. 465-466, 2008.

[13] G. Singh, et al., "Workflow task clustering for best effort systems
with Pegasus," in Proc.of the 15th ACM Mardi Gras conferences
(MG'08), pp. 235-266.

[14] A. Dolgert, et al., "Provenance in high-energy physics workflows,"
Computing in Science & Engineering, vol.10, no. 3, pp. 22-29, 2008.

[15] C. A. Goble, et al., "myExperiment: a repository and social network
for the sharing of bioinformatics workflows," Nucleic acids research,
38(suppl 2), W667-W682.

[16] A. Kashlev, et al., "A System Architecture for Running Big Data
Workflows in the Cloud," in Proc. of the 2014 IEEE International
Conference on Services Computing (SCC'14), pp. 51-58.

[17] E. Deelman, et al., "Pegasus: A framework for mapping complex
scientific workflows onto distributed systems," Scientific
Programming Journal, vol.13, no. 3, pp. 219-237, 2005.

711711711711

