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1 INTRODUCTION 
A workflow loosely use to define a sequence of connected either single-

step or multiple-step tasks as long with their dependencies to model and 

computerize business processes. Workflow task is a description of the activity of 

an individual person or team within an organization or independently. Task 

dependency illustrates the flow of product or file that is transferred from one task 

to another task to complete the process. Although workflow technology rooted 

back to 1970s and mostly used for business processes, data-centric workflow 

proposed by Vouk et al., in 1996 [1] for solving scientific research problems by 

applying workflow techniques. Since then and with the advancement of IT 

technology and e-science, data-centric workflow turns into an essential 

technology for scientists and researchers to explore and test their hypothesis.  

Data-centric workflows are formal description of scientific processes to 

represents and computerizes the scientific computational steps that scientists 

design to verify their scientific hypothesis [2, 3]. Data-centric workflows have 

been extensively employed in various data-intensive scientific areas such as 

bioinformatics, physics, astronomy, ecology and earthquake science [4]. They 

are usually modeled as directed acyclic graphs (DAGs) such that workflow tasks 

are represented by graph nodes and the data flow among tasks are represented 

by graph vertices. The direction of vertices shows the flow of the data among 

tasks. Scientists typically required modeling their hypothesis and analysis it with 

various collected data. They usually design a model of their initial hypothesis 
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and then try to refine it by repeatedly re-using the model against their collected 

data. Therefore, reproducibility is a key requirement of data-centric workflow 

management systems. 

Due to applying data-centric workflows to formalize and structure the 

complex scientific research problems, they are potentially very large and 

comprise of thousands or hundreds of complex tasks and big datasets [5, 6]. They 

are naturally data-intensive application which the amounts of data used by the 

tasks are huge and moving the huge data among tasks incredibly increases the 

execution time of the data-centric workflows. Therefore, this type of applications 

can benefit from distributed high performance computing (HPC) infrastructures 

like cluster, grid or cloud computing.  

The concept of Could Computing rooted back in 2007 [7] and has been 

studied as the next generation architecture of IT enterprise by providing cost-

effective, scalable, on-demand and elastic provisioning distributed computing 

infrastructure over the web [8-10] and has been applied in many domains [11-

14]. Executing data-centric workflows in the Cloud is a challenging problem as 

the data-centric workflow tasks and datasets are required to partition, distribute 

and assign to the execution sites (virtual machines). The advantages of using 

cloud computing for data-centric workflows are summarized as follows [15-17]: 

1) providing large amount of storage space and computing resources; 2) 

improving resource utilization by allocation the resource accordingly with the 

number of workflow nodes at each stage; 3) providing a much larger room for 
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the trade-off between performance and cost. 

Although data-centric workflows have been applied extensively to 

structure complex scientific data analysis processes, they fail to address the big 

data challenges as well as leverage the capability of dynamic resource 

provisioning in the Cloud. To address such limitations, the concept of big data 

workflows is proposed by our research group as the next generation of data-

centric workflow technologies. 

Besides theoretical, experimental and computational science, the data 

intensive computing is now viewed as the “fourth paradigm” in scientific 

research area [18]. According to Brewer's C.A.P. (Consistency, Availability and 

Fault tolerance) theorem [19, 20], a distributed system like Cloud Computing 

cannot satisfy Consistency, High-Availability and Partition-tolerance of dataset 

inside cloud datacenter simultaneously. So by having all the advantages and 

opportunities of cloud computing for executing data-centric workflows, several 

challenges raise such as managing required big dataset of workflows in a 

consistent and scalable way is a challenging problem [21].   

Data management is typically more critical than the other resource 

management in Cloud Computing Infrastructure such that separate nodes 

allocate for just data storage [22]. As scientific applications, become more and 

more data intensive, managing data in large distributed systems like cloud 

computing needs to come up with an efficient data and task placement strategy. 

The Placement strategy needs to maximize data locality and minimize data 
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movement among virtual machines in the Cloud. Such that once the workflow 

tasks are partitioned and assigned to a virtual machine, its most required datasets 

are already stored at the same virtual machine.  

In big data workflows, it is practically impossible to store all of the 

required dataset of tasks in one virtual machine due to the storage capacity 

limitation of virtual machines and the dataset movement is inevitable to execute 

big data workflows in the Cloud. Beside the storage limitation of individual 

virtual machine, there is a need to have multiple machines to enable parallel 

computing and exploit more computing power. In addition, it reduces the cost of 

the computation by using a network of commodity machines instead of a 

supercomputer. 

In the topic of data management of workflows, the assumption is that it is 

often more efficient to migrate the computation job, workflow task, closer to 

where the data is located rather than moving the data to where the application is 

running. Therefore, the main goal of data and workflow task placement should 

be to minimize the total data movement as “moving computation to data is often 

cheaper than moving data to computation” [21, 23, 24].  

As discussed above, task and data placement strategy plays a critical role 

in the successful execution of big data workflows. My dissertation goals are 

developing rebuts data and workflow task placement strategies for big data 

workflow running in the Cloud. This is required to come up with a strategy to 

find an optimal workflow execution plan. I have achieved the following 
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progresses toward my dissertation research goals:  

 We formalized both data and workflow task placement problems 

in big data workflows.  

 We proposed a new data placement strategy that considers both 

source input dataset and generated intermediate datasets obtained during 

workflow run.  

 We proposed a task placement strategy that considers placement 

of workflow tasks before workflow execution. Our proposed workflow tasks 

placement into the available virtual machines is based on their required placed 

datasets.  

 We proposed a workflow scheduling strategy that maps the 

workflow tasks into cloud virtual machines in design time. We considered one 

sub-problem of the general big data workflow scheduling problem, in which a 

deadline D is given for a workflow W, and the goal is to minimize the monetary 

cost of running W in the cloud while satisfying the given deadline.  

The dissertation is organized as follows: Chapter 2 introduces the related 

work about data placement, task mapping optimization and workflow scheduling 

of big data workflows in the Cloud. Chapter 3 presents our work on data 

placement in big data workflows. Chapter 4 presents our work on task placement 

in big data workflows. Chapter 5 presents our work on workflow scheduling. 

Finally, Chapter 6 concludes the dissertation and presents the future works.
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2 RELATED WORK 

2.1 Big Data 

The National Institute of Standards and Technology (NIST) [25], which 

is leading the development of a Big Data technology roadmap, has proposed the 

first version of definition of Big Data as follows [26]: 

 “Big Data refers to digital data volume, velocity and/or variety, 

veracity that:  

 Enable novel approaches to frontier questions previously 

inaccessible or impractical using current or conventional methods; and/or  

 Exceed the capacity or capability of current or conventional 

methods and systems.” 

Although the above definition is not completed yet we can describe that 

Big Data loosely applies for complex and huge datasets which are difficult to be 

managed by using traditional data management tools such as Relational Database 

Management Systems (RDBMS). Big Data are naturally distributed and placed 

on different sources over the Internet. These data need to be collected, distributed 

and/or replicated therefore it requires extended and particular strategies and 

requirements[27]. 

Data-centric workflow typically models and analyzes complex scientific 

research experiments, which normally contain huge volume of datasets. 

Therefore, Big Data technologies are becoming a main focus in scientific 
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computing research. Big Data can be defined by 5 characteristics, called 5 V’s, 

as illustrated in Figure 2-1[28]. 

The description of 5V’s is as follows: 

 Volume: The most important feature of Big Data is volume which 

is about large volume of datasets including terabytes records, transactions, tables 

or files. Based on IBM research [29] about 800,000 petabytes (PB) of data were 

stored in the year 2000 over the word and they expect this amount to reach 

around 35 zettabytes (ZB) by 2020. For example, Twitter generates more than 7 

terabytes (TB) of data every day and Facebook 10 TB.   

 Value: Value is about derived value from data. New advancements 

in IT technology bring the capability of collecting and accessing huge amounts 

of information and datasets not only by human beings, but also by computers and 

machines. So, getting meaningful values form collected big data is a main 

 

Figure 2-1 Five V’s of Big Data. 
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concern for scientists.  

 Velocity: Velocity applies to the enormous volume of data that 

comes in/out with high speed from different sources. This type of generated data 

regularly need to be processed in real-time, or in batch or as a stream.  

 Variety: Variety is about integrating different data formats and 

large number of diverse data sources. This is result in data collected as structured 

like relational table or unstructured like images and videos or semi-structured 

like html pages and text or mixed data. Data can origin from a different number 

of sources and/or devices such as online/offline social media, mobile, satellite, 

sensors, cameras, TV etc. 

 Veracity: Veracity is related to data consistency/certainty and data 

trustworthiness that can be applied to various stages of data management like 

data searching stage, data collecting stage and data processing stage. This feature 

of Big Data guarantees the trustworthiness, authentication and protection of 

collected datasets against unauthorized data accesses and manipulations. 

Our study is about the volume aspect of big data and how it operates to 

partition, distribute and place huge size of datasets including tables and files into 

cloud datacenters. 

2.2 Data-centric Workflows vs. Business Workflows 

Workflows have been intensively applied to business organizations to 

analyze and model their business processes from 1970s. After that, data-centric 

workflows were proposed to analyze and model scientific hypotheses and 
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improve scientific experiments to get scientific principles. Although business 

and data-centric workflows have the same origin to model and execute business/ 

scientific processes, they also have much dissimilarity. Their differences are in 

their requirements, characteristics, and life cycles. The differences can be 

categorized as follows:  

 Scientific goal vs. Business goal: The goal of data-centric 

workflows is to increase the speed of unpredictable scientific discovery and 

therefore reduce human and computation costs. On the other hand, the goal of 

business workflows is increasing revenue and profit of the enterprise and 

therefore reducing human resources.  

 Dataflow oriented vs. Control flow oriented: Data-centric 

workflows are naturally data-flow oriented and the control dependency of tasks 

is not a concern. But business workflows are often control-flow oriented and the 

control dependency and the coordination of tasks is the main concern.  

 Reproducible vs. Non-reproducible: Data-centric workflows 

required to be reproducible as they can be used by scientists to test their scientific 

ideas. Therefore, it is critical that other scientists be able to reproduce the same 

workflow to verify the correctness of their hypothesis. But, business workflows 

do not need to be reproducible as they model well-formed business processes.  

 Mutable vs. Immutable: Data-centric workflows naturally 

require to be modified frequently as they are used in trial manner by scientists. 

The reason is that the scientific ideas and hypothesis are changed frequently. 
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However, business workflows rarely need to be changed, since the business 

processes are consistent and well-defined in most cases.  

2.3 Big Data Workflows 

Big Data Workflows have been recently proposed as the next generation 

of data-centric workflows to address the challenges of big data analytics 

including volume, value, velocity, variety and veracity as well as execution 

challenges in the Cloud [30, 31]. 

Big Data workflows mainly can use the beneficiary of cloud computing 

and execute by different number of virtual machines in parallel and therefore big 

data can be horizontally scalable. It means we are able to add more virtual 

machines into the pool of resources once there is a need to have more resources 

to manage and analyze datasets. In the despite, data management is vertically 

scalable in big data workflows that mean adding more power and computation 

(CPU, RAM and …) to the server of executing workflows.  

Horizontal-scaling is through partitioning and vertical-scaling is through 

multi-core support [32]. In term of data storage layer of big data workflows, 

horizontal-scaling is based on partitioning of the datasets such that each virtual 

machine hosts only portion of the datasets, in vertical-scaling the datasets resides 

on a single node (server) and scaling is achieved through multi-core i.e. 

spreading the load between the CPU and RAM resources of that machine. For 

example Apache Cassandra [33], MongoDB [34] apply horizontal scaling and 

MySQL-Amazon RDS (The cloud version of MySQL) applies vertical scaling 
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by switching from small to bigger virtual machines. In the remains of this 

section, we introduce our proposed concept, big data workflow, as the next 

generation of data-centric workflow.  

Several data-centric workflow management systems have been proposed 

within using cloud computing environment; however, they are not generic and 

domain-independent. Some of them are developed in a specific domain like 

bioinformatics [35, 36] or astronomy [37], some are designed with applying 

different type of QoS constrains [38] and the others are a particular type of 

workflows like workflows with data parallelism [39]. Our research group has 

been proposing a generic and implementation-independency big data workflow 

called DATAVIEW as depicted in Figure 2-2 [30].  

 

Figure 2-2 Architecture for DATAVIEW as a Big Data Workflow Management 
System. 
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Our proposed big data workflow, DATAVIEW, contains four layers as 

follows: 

 Presentation Layer. This layer is the client-side of DATAVIEW 

and includes two major components: 

o Workflow Design and Configuration that provides graphical user 

interface (GUI) utility for the end users to design manipulate and save their 

workflows. In addition, workflow configuration offers capability to the 

scientists to specify the settings related to the Cloud as the execution 

environment. Cloud settings like selection the cloud providers (e.g., 

OpenStack Cloud Software [40], Amazon AWS EC2 [41] , FutureSystems 

[42]), specifying the number of virtual machines to execute the workflow. 

 Workflow Management Layer. This layer contains two 

subsystems.  

o Workflow engine which is the core component of workflows. It 

executes the workflows and orchestrates the movement of the data flow 

between tasks within different virtual machines. Figure 2-2 shows its main 

components. 

o Workflow Monitoring. It is applied to keep track of each workflow 

entities like takes and data products within workflow execution.  

 Task Management Layer. This layer is built on the top of the 

Infrastructure layer (Cloud Services layer) to collaborate and execute of 

workflow tasks in the Cloud. It contains four major components as follows: 
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o Task Management. It provides utilities to execute individual 

workflow tasks. Workflow tasks can be heterogeneous that means can be a 

built-in, web service, a script and so on. 

o Data Product Management. It manages both source and generated 

intermediate data products.  

o Provenance Management. Provenance is the history information 

about workflow data products in details within executing the workflow to 

allow reproducibility. Provenance management provides utilities to store 

browse and query workflow provenance.  

o Cloud Resource Management. This component offers cloud 

resource allocation, provisioning, mapping, discovery, configuring, 

estimation and terminating.  

 Infrastructure Layer. The Infrastructure Layer contains the 

underlying Infrastructure as a Service (IaaS) cloud platforms where workflows 

are submitted to execute. DATAVIEW applies the “all-in-the-cloud” approach 

[15] to run Big Data Workflow Management System. 

2.4 Data and Task Placement in Workflows 

Previous research studies for distributed computing environment have 

been mainly focused on the performance and optimization of job scheduling and 

task allocation. But due to the rapid increase in the size of available data over the 

internet and the emerging field of Big Data, data placement becomes a 

fundamental spot in the Cloud recently. Kosar et al., [6, 43] proposed a 
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framework for distributed computing systems which considered the data 

placement subsystem as an independent module along with computation 

subsystem. In their proposed model data placement jobs can be queued, 

scheduled, monitored, managed and even checkpointed. Kayyoor et al., [44] 

considered the data placement and replication problems together for the 

distributed environments. They claimed minimizing of query latencies is not a 

critical issue in many scenarios of analytical workloads and so they tried to 

minimize the average number of using computation nodes by grouping the most 

interdependent data together based on their occurrences of the common query 

accesses. Chervenak et al., [45] explored the advantages of separation of data 

placement as a service from workflow management systems. By applying an 

autonomous data placement service along with data replication service, they 

evaluate and display the benefits of pre-staging data compare to the data stage in 

and out strategies of Pegasus workflow management systems. However, none of 

the above studies decreasing the data movement among cloud virtual machines.  

By advent of cloud computing, new data management systems are 

developed. For instances Google File System (GFS) [46] and Hadoop 

Distributed File System (HDFS) [47] are developed to provide of data access on 

remote servers by means of huge clusters of commodity hardware. GFS is 

developed by Google for its engine search but HDF is more general which has 

been used by many companies like Facebook and Amazon. The data placement 

in HDFS is straightforward as once it is pushed a file into HDFS, it splits the file 
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into one or more chunks and stores them in a set of distributed datanodes 

randomly. HDFS also applies replication technique to improve the performance. 

In addition, some of the workflow management systems have been extended to 

execute data-centric workflow in clouds. Pegasus [48-50] is designed to execute 

data-centric workflows on number of distributed resources such as local 

machines, clusters or cloud. Nimbus [51] is an integrated set of tools which 

allows scientific users to deploy a cluster into infrastructure clouds to execute 

their data-centric workflows. Eucalyptus [52] is an open source cloud 

management software to create on-demand, self-service private cloud resources. 

In Catalyurek et al., [53] workflows were modeled by hypergraph concept 

and a hypergraph portioning technique, k-way partitioning, is applied to 

minimize the cutsize. In that way, they cluster the workflow tasks as well as their 

required data in the same execution site. One of the closet works to our data 

placement strategy is Yuan et al., [22] which they applied a greedy binary 

clustering to precluster datasets; then they greedily assigned the workflow tasks 

to an execution site that contains the most of the input datasets. At the end once 

an intermediate dataset was generated, they placed it to the execution site which 

has the most interdependent dataset. Although their approach placed the most 

interdependent dataset together and can reduce data movement, the algorithm is 

greedy and it clustered the data dependency matrix into two parts in each 

iteration and so their clustering technique was sensitive to the selection point in 

any iteration.  
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The other close work to our study is Er-Dun et al., [54] in which they 

applied genetic algorithm to find their data placement solution along with load 

balancing factor. Their approach reduced data movement however they did not 

consider data interdependency between datacenters and also they did not 

consider task assignment. In addition, they used mean measurement for the load 

balancing factor but harmonic mean is a more accurate measurement for the load 

balancing factor. 

2.5 Workflow Scheduling 

Big data workflows are resource-intensive applications as they naturally 

consist of a large number of tasks and produce massive datasets. The efficient 

workflow scheduling strategies can have significant impact on workflow 

performance. There has been extensive research on the workflow scheduling 

problem in the distributed computing community. These studies have been 

focusing on different aspects of the scheduling problem based on the various 

QoS requirements. One of the most recent work is [55] in which the authors 

proposed a workflow scheduler that minimizes the execution cost while meeting 

a specified deadline. In their approach, they apply unbounded knapsack problem 

(UKP) to find an optimal schedule for bags of homogenous tasks. Although they 

are able to schedule a workflow into different cloud resources types efficiently 

they did not consider heterogeneous tasks. In addition, they did not use any run 

time sub-deadline adjustments. In [56-58] some other scheduling algorithms 

were proposed to minimize the execution cost with deadline constraints for the 
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Grid utility systems. In [59, 60] the authors considered both budget and 

makespan as the QoS constraints, but did not use an objective function to 

minimize them. 

Lin et al. [61, 62] proposed an elastic scheduling algorithm to schedule 

the workflow dynamically in the cloud with the goal of makespan minimization. 

However, they do not consider any QoS constraints. In list-based workflow 

scheduling algorithms [63-66], the workflow tasks are ranked and sorted based 

on their start times and execution times and then the tasks are executed 

sequentially. In clustering-based approaches [67-69], tasks are first clustered in 

terms of maximum execution time or size of data movement. Then assign them 

on to possibly the same resource to minimize the data movement based upon 

these clusters. 

Workflow scheduling in cloud computing is known as NP-hard problem. 

The reason is that there is usually a large search space of solutions and it takes a 

long time to find an optimal solution. Therefore, there is no scheduling algorithm 

to produce optimal solution within polynomial time. In big data workflow 

domain, it is sometimes preferable to find a suboptimal solution, but in a short 

period of time. To achieve near optimal scheduling solutions within reasonable 

time, Metaheuristic-based approaches have been proposed [70-74]. Some of the 

popular meta-heuristic techniques are Genetic Algorithm (GA), Ant Colony 

Optimization (ACO), and Particle Swarm Optimization (PSO). 

In our previous works [75-77], we proposed data and task placement 
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strategies for optimal workflow data and task placement in the cloud by 

considering the data and task interdependencies to cluster the most dependent 

data and tasks together. These clusters were used to assign onto the same 

resource in order to minimize time taken for data movement. The limitation of 

our previous strategies is that we did not consider any QoS constraints. In one of 

our recent work [78], we propose a new big data workflow scheduler under 

budget constraint (BARENTS) that supports high-performance workflow 

scheduling in a heterogeneous cloud computing environment with a single 

objective to minimize the workflow makespan under a provided budget 

constraint.
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3 DATA PLACEMENT IN BIG DATA 
WORKFLOWS 

3.1 Introduction 

The makespan of a data-centric workflow [79-81] is the time elapsed 

between the start of the first task and the completion of the last task in the 

workflow, including the delivery of the final data product to the desired place. 

In big data workflows, makespan vary greatly depending on how the tasks and 

datasets are allocated in the distributed computing environment like Clouds. 

Incorporating a data and task allocation strategy to minimize the makespan in a 

big data workflow can deliver significant benefits to users in getting their results 

in time [76].  

This dissertation provides a formal definition of the data movement 

minimization problem of big data workflows running in a distributed 

environment and proposes efficient data and workflow tasks placement 

strategies, BDAP and TPS. 

Regarding to data placement in big data workflows, we propose BDAP, 

an evolutionary algorithm (EA) which is a generic population-based 

metaheuristic optimization strategy [82]. The main goal is to minimize the 

dataset movement between virtual machines during the execution of a workflow 

under the constraint of virtual machine storage capacity 

Example 1. Let’s consider an example to show how a workflow can be 
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executed in a cloud computing environment. Figure 3-1 illustrates a sample 

workflow with five tasks, five original datasets and five generated intermediate 

datasets [23]. Figure 3-2 shows an instance of its virtual machines configuration 

in the Cloud. In this example, tasks t1 and t2 as well as datasets, d1 and d3 were 

assigned to virtual machine 1, VM1. Similarly, tasks t3 and t4 were assigned to 

VM2 as well as datasets, d2 and d4. Once we execute the workflow, tasks t2 needs 

transferring dataset d2 from VM2 to VM1 to complete its process. However, there 

is no need to move any other original datasets from other virtual machine to VM2 

to run task t3 because all its required original datasets, d2 and d4 are already 

placed in VM2. Furthermore, t3 only required transferring the output of task t1, 

d1 from VM1 to VM2 in the run-time stage.  

Please note that the workflow scheduling [83-87] is out of the scope of 

this dissertation proposal. BDAP does not apply any specific strategy for the 

order (either sequential or parallel) execution of workflow tasks. BDAP can be 

used by any current workflow scheduling algorithms to improve the workflow 

throughput. In this dissertation, we simply execute workflow tasks in a sequential 

order to evaluate BDAP. 

3.2 Workflow Data Placement Model 

To model cloud computing environment, we consider I distributed virtual 

machines in the Cloud as the execution sites. Each virtual machine can be 

provided by different Cloud Computing Providers (CCP) such as Amazon EC2, 

Google App Engine [88], and Microsoft Azure [89]. Although CCPs normally 
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have their own data and computation placement strategy to store data and assign 

computation jobs to proper virtual machines, sometimes users (e.g., scientists) 

have concerns about their own datasets (e.g., data security or too large data or 

requirement for specific data processing utilities and equipment). Such users 

prefer to keep and store their data in a particular virtual machine and not allowed 

to move their data to the other virtual machines. This type of dataset is called 

fixed-location datasets.  

For addressing these scientific user’s concerns and managing fixed-

location datasets, users need to have private execution sites or to be able to add 

their own local computation facilities as virtual machines. In that way, we need 

to apply a new data placement strategy to address the fixed-location datasets and 

minimize the total data movement across dedicated virtual machines in the 

Cloud. 

To minimize data movement between virtual machines in the Cloud, we 

cluster the virtual machines such that the placed datasets have the highest data 

interdependency within each virtual machine as well as the lowest data 

interdependency between virtual machines. In the rest of this section, we model 

our data placement solution in detail. Table 3-1 summarizes all the used symbols 

and notations in this dissertation. 

Big data workflows are executed in Clouds as the execution environment. 

A Cloud computing environment is modeled as follows: 
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Definition 3.1 (Cloud Computing Environment C). A Cloud 

computing environment C is a 3-tuple C = (VM, SC, DTR), where 

 VM is a set of virtual machine in the Cloud vm୧ (i = 1, 2, … , I)  

 SC: VM →  Rା is a storage capacity function. SC (vm୧),  vm୧ ∈

VM gives the maximum available storage capacity of virtual machine vm୧ in the 

 Cloud computing environment C. It is measured in some pre-

determined unit such as mega-bytes, giga-bytes or tera-bytes. Rା is the set of 

positive real number.  

 DTR: VM×VM → Q଴
ା is the data transfer rate function. 

DTR(vm୧ଵ, vm୧ଶ),  vm୧ଵ,  vm୧ଶ ∈ VM gives the data transfer rate between two 

Figure 3-1 A workflow with five tasks {tଵ, tଶ, tଷ, tସ, tହ} and five datasets 
{dଵ, dଶ, dଷ, dସ, dହ}. The output of task ti is denoted by d’i. The input datasets of task tଵ 

are {dଵ, dଷ}, tଶ are {d′ଵ, dଶ, dଷ}, tଷ are {d′ଵ, dଶ, dସ}, tସ are {d′ଶ, d′ଷ, dଶ, dସ, dହ} and 
tହare {d′ସ, dହ}. 
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virtual machines vm୧ଵand vm୧ଶ. It is measured in some pre-determined unit such 

as mega-bytes, giga-bytes per second. Q଴
ା is the set of positive rational number. 

For solving the complex scientific problems, scientists are able to create 

and run their own workflows simultaneously. Each individual workflow contains 

a set of tasks that consume various datasets and may produce intermediate 

datasets as well. Those produced datasets will be sent to other tasks as their 

inputs by following the data flow logic. A big data workflow is formalized as 

follows: 

Definition 3.2 (Big Data Workflow W). A big data workflow W can be 

modeled formally as a 6-tuple that consists of three sets and two functions as 

follows: 

W = (𝑇, 𝐷, 𝐷ᇱ, 𝑆, 𝑇𝑆, 𝐷𝑆) 

 T is the set of workflow tasks. Each individual task is denoted by 

t୩, T = {tଵ, tଶ, tଷ, … , t୏}. 

 D is the set of input datasets for workflow W. Each individual 

dataset is denoted by d୨, D = ൛dଵ, dଶ, … , d୎ൟ.  

 D′ is the set of output datasets for workflow W. The total number 

of output datasets is equal to the total number of workflow tasks as each 

workflow task, t୩ generates one output dataset, d୩ which can flow to the other 

tasks as the input dataset. Each individual output dataset is denoted by d′୩, D′ =

{d′ଵ, d′ଶ, … , d′୏}.  

 S: D ∪ D′ → Rା is the dataset size function. S(d୨),  d୨ ∈ D ∪ D′ 
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returns the size of original or generated dataset d୨. The size of a dataset is defined 

in some pre-determined unit such as mega-bytes, giga-bytes or tera-bytes. Rା is 

the set of positive real number. 

 TS: D ∪ Dᇱ  → T is the dataset-task function. TS൫d୨൯,  d୨ ∈ D ⋃ D′  

returns the set of workflow tasks that consume d୨ as their input.   

 DS: T →  D ∪ Dᇱ is the task-dataset function. DS(t୩),  t୩ ∈ T 

returns the set of datasets that are consumed by t୩ as its input. The datasets can 

be either original or generated datasets. 

To evaluate and compare BDAP with the others proposed algorithms 

Workflow Communication Cost is defined as follows [61, 62]: 

 

Figure 3-2 A virtual machine configuration in the Cloud with three virtual machines 
for workflow of Example I. Datasets {dଵ, dଷ} and tasks {tଵ, tଶ} were placed and 

assigned in VM1. Datasets {dଶ, dସ} and tasks {tଷ, tସ} were placed and assigned in 
VM2. Similarly, dataset {dହ} and tasks {tହ} was placed and assigned in VM3. 
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Notations Description 

𝑽𝑴 The set of virtual machines 

𝒗𝒎𝒊 The ith virtual machine in VM 

𝑺𝑪(𝒗𝒎𝒊) The storage capacity of virtual machine vm୧ 

𝑫 The set of datasets 

𝑫𝒇𝒊𝒙𝒆𝒅 The set of fixed datasets,  D୤୧୶ୣୢ ⊆ D 

𝒅𝒋 The jth dataset in D 

𝑺(𝒅𝒋) The size of dataset d୨ 

𝑻 The set of Tasks 

𝑫𝑺(𝒕𝒌) The set of datasets as the input of task t୩ 

𝑻𝑺(𝒅𝒋) The set of tasks which get dataset d୨ as the input 

𝑫𝑻𝑹(𝒗𝒎𝒊𝟏, 𝒗𝒎𝒊𝟐) The data transfer rate between two virtual 
machines, vm୧ଵand vm୧ଶ 

𝒅𝒑(𝒅𝒋𝟏, 𝒅 𝒋𝟐) The data interdependency between datasets d୨ଵ and d୨ଶ 

𝒕𝒑(𝒕𝒌𝟏, 𝒕𝒌𝟐) The task interdependency between tasks t୩ଵ and t୩ଶ 

𝑫𝑷 The data interdependency matrix of D 

𝑻𝑷 The task interdependency matrix of D 

𝜳 The J-element vector of datasets placement scheme which J is the 
number of workflow datasets.  

𝜳(𝒅𝒋) The virtual machine to which dataset d୨ is assigned in the 
placement scheme Ψ 

𝚽 The K-element vector of tasks placement scheme which K is the 
number of workflow tasks.  

𝚽(𝒕𝒌) The virtual machine to which task 𝑡௞ is assigned in the placement 
scheme  

𝑷 The set of data placement schemes 

𝑸 The set of task placement schemes  

Table 3-1 Symbols and notations.
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Definition 3.3 (Workflow Communication Cost, WCC). If dataset d୨ is 

required to transfer from virtual machine vm୧ଵ to vm୧ଶ then the data movement 

cost of d୨ is defined as  

𝐷𝑀𝐶൫𝑑௝ , 𝑣𝑚௜ଵ , 𝑣𝑚௜ଶ൯ =  ቐ

0,                                  𝑖𝑓 𝑖ଵ = 𝑖ଶ

𝑆൫𝑑௝൯

𝐷𝑇𝑅(𝑣𝑚௜ଵ, 𝑣𝑚௜ଶ)
,    𝑖𝑓 𝑖ଵ ≠ 𝑖ଶ

             (1) 

Given a workflow W and Cloud C, workflow communication cost is equal 

to the total data movement cost for executing workflow W in C is defines as 

follows: 

𝑊𝐶𝐶(𝑊, 𝐶) =  ෍ ෍ 𝐷𝑀𝐶൫ 𝑑௝ , 𝑣𝑚௜ଵ , 𝑣𝑚௜ଶ൯

ௗೕ∈஽ௌ(௧ೖ)

௧ೖ∈ௐ

௄

௞ୀଵ

                         (2) 

WCC gives the total data movement within executing the whole workflow 

in the Cloud C. In the remainder of this section, we define and model the problem 

and our solution. Our solution is based on the clustering technique. The three 

main concepts in clustering are objects which need to be clustered, clusters and 

a separation measure to compute the similarity among the objects [90].  

In this dissertation, datasets and workflow tasks are considered as the 

objects and virtual machines in the Cloud are considered as the clusters. The 

most important concept is defining a good separation measurement to cluster the 

most similar objects together to meet the objective goal. 

The goal of our proposed data is minimizing data movement among 

virtual machines. Therefore, we consider data interdependency as the separation 
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measurement. For this, two datasets are interdependent and should be collocated 

in the same virtual machine if they are simultaneously needed as inputs by many 

tasks. The definition for the interdependency of a pair of datasets is as follows: 

Definition 3.4 (Data Interdependency). We consider the number of 

common tasks that take a pair of datasets as input to define the data 

interdependency of the datasets. Data interdependency value is divided by the 

total number of workflow tasks in order to be normalized in the range of [0 1]. 

Formally, given two datasets d୨ଵ and d୨ଶ, the data interdependency is calculated 

by: 

𝑑𝑝൫𝑑௝ଵ, 𝑑௝ଶ൯ =  
ห𝑇𝑆(𝑑௝ଵ) ∩ 𝑇𝑆(𝑑௝ଶ)ห

|𝑇|
                                       (3) 

For instance, if the set of tasks that consume dଵ is TS(dଵ) = {tଵ,tଶ} and 

dଶ is TS(dଶ) =  {tଶ,tଷ, tସ}  then the data interdependency between 

dଵ and dଶ is dp(dଵ, dଶ) =  
|୘ୗ(ୢభ)∩୘ୗ(ୢమ)|

|୘|
=

| {୲భ,୲మ}∩ {୲మ,୲య,୲ర} |

|{୲భ,୲మ,୲య,୲ర,୲ఱ}|
 =

ଵ

 ହ
= 0.20.   

In this way, two datasets are interdependent once they have at least one 

common task consuming both of them. Two datasets have a higher 

interdependency when they are used by more common tasks and the greater the 

number of common tasks is, the higher is the data interdependency of datasets.  

To maximize data locality, it is necessary to pre-cluster the datasets 

initially. In the first step, we calculate the data interdependency of all the 

workflow datasets and generate the data interdependency matrix (DM). In the 

interdependency matrix, rows and columns are the workflow datasets and the 
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value of interdependency matrix is the data interdependency between two 

datasets. For instance, data interdependency matrix of workflow in Example1 is 

as follows:  

⋱ d1 d2 d3 d4 d5 dᇱ
1 dᇱ

2 dᇱ
3 dᇱ

4
d1
d2
d3
d4
d5
dᇱ

1
dᇱ

2
dᇱ

3
dᇱ

4
⎝

⎜
⎜
⎜
⎜
⎛

0.4 0.2 0.4
0.2 0.6 0.2
0.4 0.2 0.4

0.0 0.0 0.2 0.0 0.0 0.0
0.4 0.2 0.4 0.2 0.2 0.0
0.0 0.0 0.2 0.0 0.0 0.0

0.0 0.4 0.0
0.0 0.2 0.0
0.2
0.2
0.0

0.4
0.2
0.0

0.2
0.4
0.0

0.4 0.2 0.2 0.2 0.2 0.0
0.2 0.4 0.0 0.4 0.2 0.2
0.6
0.2
0.0

0.4
0.2
0.2

0.4 0.8 0.6 0.4
0.2 0.4 0.2 0.2
0.0 0.2 0.0 0.2⎠

⎟
⎟
⎟
⎟
⎞

 

 BDAP partitions and distributes the original datasets into all appropriate 

virtual machines in the Cloud. Then the related tasks will be assigned to the 

corresponding virtual machine so that their required datasets are stored there. In 

this way, the total amount of data movement between virtual machines is 

decreased and the overall workflow execution time will be reduced. Data 

placement scheme is defined to represent the place of each workflow dataset in 

a virtual machine. A data placement scheme is defined formally as follows: 

Definition 3.5 (Data Placement Scheme 𝚿). Suppose there are I virtual 

machines and J datasets, a data placement scheme is represented by a J-element 

vector Ψ such that Ψ൫d୨൯ indicates the virtual machine to which d୨ is placed. For 

example the data placement scheme of Example I is Ψ = (1, 2, 1, 2, 3, 1, 1, 2, 2) 

and it means datasets dଵ, dଷ, dଵ
∗  and dଶ

∗   are placed in virtual machine vmଵ 

(Ψ(dଵ) =  Ψ(dଷ) = Ψ(dଵ
ᇱ ) = Ψ(dଶ

ᇱ ) = vmଵ), datasets dଶ, dସ, dଷ
ᇱ  and dସ

ᇱ  in 

virtual machine vmଶ (Ψ(dଶ) =  Ψ(dସ) = Ψ(dଷ
ᇱ ) = Ψ(dସ

ᇱ ) = vmଶ) and the 
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dataset dହ in virtual machine vmଷ ( Ψ(dହ) = vmଷ).  

Definition 3.6 (Fixed-Location Datasets 𝐃𝐟𝐢𝐱𝐞𝐝). Given the set of 

datasets, fixed-location datasets D୤୧୶ୣୢ ⊆ D is a subset of D such that they have 

pre-determined allocations and cannot be moved. Formally suppose D୤୧୶ୣୢ =

 ൛ d୨ଵ, d୨ଶ, … , d୨୫ൟ ⊆ D then  

Ψ൫𝑑௝ଵ൯ = 𝑣𝑚௜ଵ , 𝛹൫𝑑௝ଶ൯ = 𝑣𝑚௜ଶ, … 𝑎𝑛𝑑 𝛹൫𝑑௝௠൯

= 𝑣𝑚௜௠ { 𝑣𝑚௜ଵ, 𝑣𝑚௜ଶ , … , 𝑣𝑚௜௠}  ⊆ 𝑉𝑀     

the other datasets, D − D୤୧୶ୣୢ, are called flexible. 

We consider all the workflow tasks are flexible and there are no fixed 

tasks because moving computation task to datasets is often cheaper than moving 

datasets to computation task nodes. To define a good measurement to compare 

separation between virtual machines, data interdependency within and between 

virtual machines are defined as follows: 

Definition 3.7 (Within-VirtualMachine Data 

Interdependency 𝐕𝐌𝐃𝐖). 

𝑉𝑀𝐷ௐ(𝛹) =  ෍ ෍ 𝑑𝑝൫𝑑௝ଵ, 𝑑௝ଶ൯ 

అ൫ௗೕభ൯ ୀ ௩௠೔

అ൫ௗೕమ൯ ୀ ௩௠೔

ூ

௜ୀଵ

                                     (4)  

Where dp൫d୨ଵ, d୨ଶ൯ is the data interdependency between task d୨ଵand d୨ଶ , I is the 

maximum number of virtual machines in the Cloud.  

Definition 3.8 (Between-VirtualMachine Data 

Interdependency 𝐕𝐌𝐃𝐁). 
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𝑉𝑀𝐷஻(𝛹) =  ෍ ෍ 𝑑𝑝൫𝑑௝ଵ, 𝑑௝ଶ൯ 

అ൫ௗೕభ൯ୀ ௩௠೔భ

అ൫ௗೕమ൯ୀ ௩௠೔మ

(ூ,ூ)

௜భஷ௜మ
(௜భ,௜మ)∈(ூ,ூ)

                        (5) 

To achieve the data placement goal, BDAP uses heuristic information for 

its search direction of finding the best data placement scheme. Heuristic 

information should consider both within and between virtual machine 

interdependency. The heuristic is defined in BDAP as follows: 

Definition 3.9 (Data Interdependency Greedy DG). The DG heuristic 

biases BDAP to select the data placement scheme with higher data 

interdependency. It is defined as: 

𝐷𝐺(𝛹) =
𝑉𝑀𝐷ௐ(𝛹) + 1

𝑉𝑀𝐷஻(𝛹) + 1
                                                                  (6) 

In this formula, the numerator measures Within-VirtualMachine Data 

Interdependency and the denominator measures the Between-VirtualMachine 

Data Interdependency. The bias 1 is set to avoid divided-by-zero in the case that 

the data interdependency between virtual machines get zero. A good data 

placement scheme has a higher DG. Therefore, the output of BDAP is a data 

placement scheme with the highest DG.  

In our system model, we consider two types of system constraints in terms 

of data which are defined as follows: 

Definition 3.10 (Data Placement Scheme Legality Constraints). Two 

types of illegal data placement schemes are considered in BDAP: 

 Virtual machine storage capacity constraint: The total amount of 
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placed datasets into a virtual machine should be less than the available storage 

capacity of the virtual machine as it is impossible to fit all those datasets into the 

same virtual machine.  

 Non-replication constraint: Once a dataset is placed into a specific 

virtual machine, it is not allowed to place it into another virtual machine as data 

and task replication is not in the scope of this version of BDAP. 

Definition 3.11 (Data Placement Solution). The data placement solution 

for big data workflow, W, to execute in a cloud computing environment, C, is to 

select a data placement scheme Ψ ∈ P to minimize the workflow communication 

cost (WCC) under the virtual machine storage capacity and non-replication 

constraints. In the next section, we explain our data placement strategy, BDAP, 

in detail. 

3.3 Workflow Data Placement Algorithm-BDAP 

The main goal of BDAP is to minimize workflow communication cost by 

minimizing the data movement between virtual machines in the Cloud within 

running a workflow. The main steps of BDAP which applies in design-time are 

depicted in Figure 3-3. BDAP starts with calculating the data interdependency 

matrix. Then, it generates a set of legal data placement schemes randomly and 

calculates their heuristic values. In the following, for each data placement 

scheme, BDAP applies three main operators, Selection, Crossover, and Mutation 

sequentially to generate possibly better schemes with higher heuristic values. At 

the end, the best observed data placement scheme is recorded in Ψୠୣୱ୲ and will 
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be returned as the output of BDAP.  

Selection, crossover and mutation operators are defined as follows: 

Definition 3.11 (Selection SE). Selection is the process of choosing two 

schemes for recombination and generation two new schemes. There are many 

methods to perform selection. We use the Roulette Wheel Selection techniques 

for BDAP.  

In this selection operator, the probability to choose a certain scheme is 

proportional to its heuristic value. 

Definition 3.12 (Crossover CO). This operator combines two selected schemes 

to reproduce two new schemes. The idea is that the new generated schemes may 

be better and have higher heuristic value if they take the best characteristics from 

their parent schemes. For instance, suppose Ψ୪ଵ < 1, 2, 1, 2, 3 >, Ψ୪ଶ <

2, 2, 1, 3, 1 > and the selected row number to crossover is 3 then Ψ୪ଵ
ᇱ <

1, 2, 1, 3, 1 > and Ψ୪ଶ
ᇱ < 2, 2, 1, 2, 3 >.   

Figure 3-3 Flowchart of BDAP. 
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Definition 3.13 (Mutation MU). After crossover, BDAP applies 

mutation operator to an individual scheme to generate a new version of it such 

that a virtual machine position in the scheme have been randomly changed. 

Mutation prevents BDAP to be trapped in a local maximum heuristic value. For 

example, suppose Ψ୪ < 1, 2, 1, 2, 3 > and the select row number is 4 and 

generated randomized number for position 4 is 3 then Ψ′୪ < 1, 2, 1, 3, 3 >. 

For applying data placement strategy and analyzing the data 

interdependency, the whole workflow must be designed. It means all tasks and 

datasets of the big data workflow must be specified. The BDAP algorithm is 

outlined in Algorithm 1.  

In the first step, BDAP generates popsize number of feasible and valid 

data placement schemes randomly with the locations for fixed-location datasets 

fixed. It also calculates the heuristic value of each individual scheme (lines1-5). 

The position numbers of the fixed-location datasets in the generated data 

placement scheme is fixed and will not change through the whole algorithm.   

In the next steps, BDAP applies three main operators to generate new 

schemes with a hopefully higher heuristic values until it reaches the max number 

of iterations. First, it selects ne = popsize × elitism_rate number of scheme with 

the highest heuristic value and saves them in the Pop୉ (lines 9-10), these high-

value schemes will transfer directly to the next generation of schemes to 

guarantee the convergence of BDAP. We apply the fitness proportionate 

selection, roulette wheel selection, for this step. The idea behind the roulette  
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Algorithm 1.  Big Data Placement (BDAP).  
Input:  
       D:    set of workflow datasets,  
       DP: data interdependency matrix,  
       popsize:           size of population, 
       er:                     rate of elitism, 
       cr:                     rate of crossover, 
       mr:                    rate of mutation, 
       num_iteration: number of iterations, 
Output: 
       The best data placement scheme, 𝛹௕௘௦௧ 

1. Begin 
2.     for i = 1 to popsize do 
3.            𝛹 ← Generate a legal data placement scheme randomly; 
4.        𝑃𝑜𝑝 ← < 𝛹, 𝐷𝐺(𝛹) >; 
5.     end for 
6.     idx = 0;  
7.     while ( idx ≤ num_iteration ) do 
8.         ne = popsize × er;  //  number of elitism 
9.       𝑃𝑜𝑝ா ← The best ne data placement schemes in Pop; 
10.         nc = popsize * cr; // number of crossover   
11.         for i =1 to nc do 
12.            randomly select two data placement scheme 𝛹஺ and 𝛹஻ from Pop; 
13.            generate ΨC and ΨD by one-point crossover for flexible datasets 

of 𝛹஺ and 𝛹஻; 
14.            𝑃𝑜𝑝஼ ← < 𝛹஼ , 𝐷𝐺(Ψେ) >; 
15.            𝑃𝑜𝑝஼ ←< 𝛹஽ , 𝐷𝐺(Ψ஽) >; 
16.         end for 
17.          nm= popsize × mr;// number of mutation   
18.          for i =1 to nm do 
19.              select a data placement scheme 𝛹௝ from 𝑃𝑜𝑝஼; 
20.      𝛹௝

ᇱ ← mutate randomly a flexible virtual machine position number 
in 𝛹௝  ; 

21.              if  𝛹௝
ᇱ is illegal 

22.                 update 𝛹௝
ᇱ with a data placement scheme by repairing 𝛹௝

ᇱ; 

23.              end if 
24.              𝛹௝ ← 𝛹௝

ᇱ; 

25.           end for 
26.           Pop ← 𝑃𝑜𝑝ா  and 𝑃𝑜𝑝஼; 
27.           idx = idx +1;   
28.     end while 
29.     return the best data placement scheme 𝛹௕௘௦௧; 
30. End 
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wheel selection technique is that each scheme is given a chance to select in 

proportion to its heuristic value. Then, it applies the crossover function and 

computes the heuristic value of the new generated schemes (lines 11-16). In the 

last step, BDAP applies the mutation operator for a randomly selected scheme 

along with computing its heuristic value (lines 17-25). In the crossover and 

mutation phases, BDAP does not change the number of virtual machine position 

for the fixed-location datasets and applied those functions only on flexible 

datasets. 

The idea behind the roulette wheel selection technique is that each scheme 

is given a chance to select in proportion to its heuristic value. Then, it applies the 

crossover function and computes the heuristic value of the new generated 

schemes (lines 11-16). In the last step, BDAP applies the mutation operator for 

a randomly selected scheme along with computing its heuristic value (lines 17-

25).  

In the crossover and mutation phases, BDAP does not change the number 

of virtual machine position for the fixed-location datasets and applied those 

functions only on flexible datasets. These three operators apply to the schemes 

till it reaches a certain number of iterations, a parameter defined by the user at 

the beginning of the algorithm. In the last step, the best data placement scheme 

Ψୠୣୱ୲ is returned as the output of BDAP. 

3.4 Experiments and Discussion 

In this section, we present and discuss the simulation results and compares 
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BDAP with the most competitive and Random approaches.  

3.4.1 Simulation Setting 

To evaluate performance of our proposed data placement approach, 

BDAP, we compare it with Yuan’s work and random strategies. Yuan’s work is 

the one of the most competitive algorithms in this field. It is a K-means based 

clustering algorithm which applies a heuristic binary clustering algorithm to 

precluster datasets into their appropriate virtual machines. Then, it greedily 

assigns the workflow tasks to each virtual machine such that it stores the most of 

its input dataset. Once an intermediate dataset is generated, it places it to the 

virtual machine that has the most interdependent datasets with the newly 

generated dataset.  

We simulate a cloud computing environment on the Wayne State 

University’s high performance Grid Computing. We use eight grid computation 

nodes along with total storage capacity of 100 GB and compared the three 

algorithms by simulating a variety of real and synthetic workflows. We test 

BDAP using five synthetic workflow applications based on real data-centric 

workflows [11]: Montage [91, 92], CyberShake [93-96], Epigenomics [97-99], 

LIGO [26, 100, 101] and SIPHT [102, 103] (Figure 3-4). These workflow 

applications are developed through the Pegasus workflow management system 

for different research domains like bioinformatics and astronomy. We select the 

large-size of each workflow with about 1000 number of tasks and assume each 

task can be executed on every virtual machine. For our experiments, we run 100 
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times each of the selected workflows along with assigning five different numbers 

of datasets to their tasks randomly. The numbers of datasets are 5, 10, 25, 50 and 

100, and dataset sizes are uniformly distributed in the range of [1TB 100TB]. In 

addition, we consider five size numbers of virtual machines, 5, 10, 15, 20 and 25 

in the range of [200TB 1PB] of storage capacity (as shown in Table 3-2).Virtual 

machines storage capacities are selected in a uniformly distributed manner too. 

We demonstrate the performance of our proposed data placement algorithm and 

Yuan and Random approaches in terms of the average of the workflow 

communication cost (WCC) defined in the previous section. In our experiments, 

we assume that the data transmission rates among all virtual machines are fixed. 

Virtual machines storage capacities are selected in a uniformly distributed  

Figure 3-4 The structure of five realistic data-centric workflows [48]. 
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manner too. We demonstrate the performance of our proposed data placement  

algorithm and Yuan and Random approaches in terms of the average of the 

workflow communication cost (WCC) defined in the previous section. In our 

experiments, we assume that the data transmission rates among all virtual 

machines are fixed. Table 3-3 shows the value of parameters using in BDAP. We 

do our experiments for two different scenarios, one scenario with considering 

20% of fixed-location datasets and the other one without considering fixed-

location datasets and consider the average of it. 

 

 

3.4.2 Results 

Figure 3-5 shows the Workflow Communication Cost (WCC), in terms 

of hour by varying the number of datasets and fixing the number of virtual 

machines. WCC is increased by increasing the number of datasets in all three 

# of datasets 

Dataset size 

# of virtual machines 

Virtual machines storage capacity 

[5,10,25,50,100] 

1TB – 100TB 

[5,10,15,20,25] 

200TB – 1PB 

Table 3-2 Description of dataset and virtual machine of the experiment.

Population size 

Initial population 

Maximum generation 

Crossover probability 

Mutation probability 

Maximum iteration 

100 

Randomly generation 

100 

0.8-0.9 

0.3-0.5 

1000 

Table 3-3 Default setting for the BDAP algorithm.
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strategies. However, it can be seen clearly that our strategy reduces WCC 

compared to the other strategies. This results in greater improvement margin 

with more number of datasets.  

In the next step (Figure 3-6), we calculate WCC by varying the numbers 

of virtual machines and fixing the number of datasets. Although WCC is 

increased by increasing the number of virtual machines, the increasing rate of 

our strategy is slower than the others. This results in greater improvement margin 

with more number of virtual machines.  

We demonstrate performance of BDAP in terms of workflow 

communication cost by varying the number of datasets and virtual machines for 

Figure 3-5 Workflow Communication Cost by varying the number of datasets. 
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five different types of workflows. We compare the BDAP strategy with Yuan as 

well as with random strategies. The result shows that BDAP manages to decrease 

effectively workflow communication cost more than Yuan and Random 

approaches. To see the impact of the total number of fixed-location datasets, we 

compare the three approaches for fixed number of datasets and datacenters and 

varying the percentages of fixed-location datasets in Figure 3-7 by having more 

fixed-location datasets, WCC is increased in BDAP and Yuan algorithms and 

there is almost no change for Random strategy. The reason is that the BDAP and 

Yuan algorithms are not allowed to change the location of the fixed-location 

datasets and the impact of these algorithms are on flexible datasets. 

Figure 3-6 Workflow Communication Cost by varying the number of virtual machines. 
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3.5 Data Placement Algorithm in DATAVIEW 

In our DATAVIEW system [104, 105], we integrated the big data 

workflow engine subsystem with FutureSystems academic research cloud 

provider to automatically provision virtual machines to execute data-centric 

workflows in the Cloud. We implemented bash scripts to automatically provision 

VMs by first creating new VM images in the FutureSystems framework through 

configuring both hardware and software stack. Workflows execution is 

transparent to our data scientists. They can just create and run any arbitrary 

workflow and the system deploys a set of virtual machines, datasets and moves 

workflow tasks to the corresponding virtual machine. 

In design time, we created the sophisticated XML parser to parse the 

workflow specification, which is stored in the XML format. The XML parser 
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Figure 3-7 Workflow Communication Cost by varying the percentages of fixed-
location datasets and for fixed number of workflow nodes, 1000, and datacenters, 50. 
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extracted all workflow tasks, a set of input data products and a set of output 

datasets that will be generated at run time. The XML parser generated output 

(dpID, taskID) key/value pairs that contain mapping details to map datasets to 

corresponding workflow tasks. BDAP algorithm validate the (key, value) pairs 

to identify the optimal mapping of datasets and workflow tasks to the 

corresponding virtual machines.  

In running time, DATAVIEW provisioned a set of virtual machines in 

FutureSystems and deployed datasets to the corresponding virtual machines 

based on the output of BDAP. In our DATAVIEW system, we used files as a 

dataset type and used SCP command to move actual files from our DATAVIEW 

system to the provisioned virtual machines. In the next step, we assigned all the 

workflow tasks to the provisioned virtual machines. After assigning workflow 

tasks and datasets, the workflow was executed and intermediate datasets were 

moved to the corresponding virtual machines. Data flow between each workflow 

task was implemented by the SCP command. The final dataset was moved from 

its virtual machine to the DATAVIEW system and the results were published to 

the user. In this way, all low-level details were hidden from the data scientists 

and only the intermediate and final data products generated by the workflow 

were visible to data scientists. Table 3-4 shows some of the result of applying 

BDAP for the execution of workflow in Example 1. 
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The best data placement scheme in the : 

First population <d#, vm#> Last (10th) population <d#, vm#> 

<d1,vm1><d2,vm2><d3,vm3><d4,vm3><

d5,vm1><d’1,vm2><d’2,vm1><d’3,vm1><

d’4,vm3>  

DG = 0.1671 and WCC = 0.0097 hr 

<d1,vm3><d2,vm1><d3,vm3><d4,vm1><d

5,vm2><d’1,vm1><d’2,vm2><d’3,vm1> 

<d’4,vm2>  

DG = 3.4032 and WCC = 0.0041 hr 

<d1,vm2><d2,vm1><d3,vm3><d4,vm1><

d5,vm3><d’1,vm3><d’2,vm1><d’3,vm2> 

<d’4,vm3>  

DG = 0.2513 and WCC = 0.0083 hr 

<d1,vm1><d2,vm2><d3,vm1><d4,vm2><d

5,vm3><d’1,vm2><d’2,vm1><d’3,vm3> 

<d’4,vm2>  

DG = 3.4678 and WCC = 0.0033 hr 

<d1,vm2><d2,vm2><d3,vm1><d4,vm3><

d5,vm3><d’1,vm3><d’2,vm3><d’3,vm1> 

<d’4,vm3>  

DG = 0.3165 and WCC = 0.0081 hr 

<d1,vm2><d2,vm2><d3,vm1><d4,vm2><d

5,vm3><d’1,vm2><d’2,vm3><d’3,vm3> 

<d’4,vm1>  

DG = 3.3692 and WCC = 0.0042 hr 

Table 3-4 Some results of BDAP running.
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4 TASK PLACEMENT IN BIG DATA 
WORKFLOWS 

4.1 Introduction 

Decomposing a complex application as a workflow simplifies design 

effort, enables reuse of computational modules and allows their parallel and/or 

pipelined execution. With the progress in computing, storage, networking, and 

sensing technologies and the ease of performing collaborative scientific research, 

it is feasible to conceive much more complex data-centric workflows that involve 

big data sets and run over distributed and heterogeneous computing 

environments. 

Workflow management system is a platform to support two key functions: 

1) design and specification of workflows, and 2) configuration, execution and 

monitoring of workflow runs. Examples of notable data-centric workflow 

management system include Taverna [106], Kepler [107], Vistrails [108], 

Pegasus, Swift [109] and VIEW [110]. Traditionally, these systems have used a 

directed acyclic graph (DAG) abstraction to model a workflow where each 

vertex of the graph represents a workflow task, and the directed edges between 

two vertices depicts dataflow between the corresponding tasks.  

Since scientific applications become more and more data intensive, it is 

more critical to assigned workflow tasks to the same virtual machines which are 

already hosted their required datasets to maximize data locality and minimize 
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data migrations between virtual machines in the Cloud. Practically, it is 

impossible to store all the required datasets of workflow tasks in one virtual 

machine due to the storage capacity limitation of virtual machines and so data 

movement is necessary to execute data-centric workflows. The main goal of task 

and data placement is to minimize the total data movement between virtual 

machines.  

In this chapter of dissertation, we propose task placement strategy (TPS), 

an evolutionary algorithm (EA) which is a genetic-based task placement in big 

data workflows such that the data movement between virtual machines during 

the execution of a workflow gets minimized. Let’s consider the example 1 in 

chapter 3. Figure 4-1.a) illustrates the workflow with five tasks, five original 

datasets and five generated intermediate datasets. Figure 4-1.b) shows an 

instance of its virtual machines configuration in the Cloud. In this example, 

datasets, d1 and d3 were assigned to virtual machine 1, VM1. Similarly, datasets 

d2 and d4 were assigned to VM2. Figure 4-1.c) shows an instance of the virtual 

machines configuration in the Cloud with assigning tasks t1 and t2 as well as 

datasets, d1 and d3 virtual machine 1, VM1. Tasks t3 and t4 were assigned to VM2 

and task t5 and dataset d5 were assigned to VM3. 

To come up with a task placement of big data workflows, our proposed 

strategy, TPS, clusters the most interdependent workflow tasks together and 

assign them possibly in the same virtual machine in the Cloud.  

A random set of task placement schemes are generated in the first step. In  
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a. Sample Workflow. 

 

b. Big Data Placement (BDAP). 

 

c. Task Placement Strategy (TPS). 

Figure 4-1 a) Workflow of Example 1 b) Data placement c) Task placement.
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the next step, TPS computes and compares the generated schemes by applying a 

defined heuristic function and return the best scheme. The heuristic function is 

based on the task interdependency within and between the virtual machines in 

the Cloud. The best scheme is the one which maximizes the task interdependency 

within each virtual machine and minimizes the task interdependency between 

virtual machines.   

4.2 Workflow Task Placement Model 

To minimize data movement between virtual machines in the Cloud, we 

cluster the virtual machines such that the placed tasks have the highest task 

interdependency within each virtual machine as well as the lowest task 

interdependency between virtual machines. In the rest of this section, we model 

our task placement solution in detail.  

To model TPS we customized the definitions of chapter 3 and add the new 

required sets or functions. A cloud computing environment is modeled as 

follows: 

Definition 4.2.1 (Cloud Computing Environment C). A cloud 

computing environment C is a 4-tuple C = (VM, CC, SC, DTR), where 

 VM is a set of virtual machine in the Cloud vm୧ (i = 1, 2, … , I). 

 CC: VM →  Rା is a computation capacity function. 

CC (vm୧),  vm୧ ∈ VM gives the maximum available computation capacity of 

virtual machine vm୧ in the Cloud computing environment C. It is measured in 

some pre-determined unit such that 1000 cycle in millisecond. Rା is the set of 
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positive real number.   

 SC: VM →  Rା is a storage capacity function. SC (vm୧),  vm୧ ∈

VM gives the maximum available storage capacity of virtual machine vm୧ in the 

Cloud computing environment C. It is measured in some pre-determined unit 

such as mega-bytes, giga-bytes or tera-bytes. Rା is the set of positive real 

number.  

 DTR: VM×VM → Q଴
ା is the data transfer rate function. 

DTR(vm୧ଵ, vm୧ଶ),  vm୧ଵ,  vm୧ଶ ∈ VM gives the data transfer rate between two 

virtual machines  vm୧ଵand vm୧ଶ. It is measured in some pre-determined unit 

such as mega-bytes, giga-bytes per second. Q଴
ା is the set of positive rational 

number. 

The above three attributes, CC, SC and DTR are not fixed or static for a 

virtual machine at all times. These are considered to be established by a priori 

negotiation and remain unchanged during the execution of an individual 

workflow. Big data workflow is formalized as the previous chapter by adding 

one more function as follows: 

Definition 4.2.2 (Big Data Workflow W). Big data workflow W can be 

modeled formally as a 6-tuple that consists of three sets and two functions as 

follows: 

 W = (𝑇, 𝐷, 𝐷ᇱ, 𝑆, 𝑇𝑆, 𝐷𝑆) 

 T is the set of workflow tasks. Each individual task is denoted by 

t୩, T = {tଵ, tଶ, tଷ, … , t୏}. 
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 D is the set of input datasets for workflow W. Each individual 

dataset is denoted by d୨, D = ൛dଵ, dଶ, … , d୎ൟ. 

 D′ is the set of output datasets for workflow W. The total number 

of output datasets is equal to the total number of workflow tasks as each 

workflow task, t୩ generates one output dataset, d୩ which can flow to the other 

tasks as the input dataset. Each individual output dataset is denoted by d′୩, D′ =

{d′ଵ, d′ଶ, … , d′୏}. 

 S: D ∪ D′ → Rା is the dataset size function. S(d୨),  d୨ ∈ D ∪ D′ 

returns the size of original or generated dataset d୨. The size of a dataset is defined 

in some pre-determined unit such as mega-bytes, giga-bytes or tera-bytes. Rା is 

the set of positive real number. 

 TS: D ∪ Dᇱ  → T is the dataset-task function. TS൫d୨൯,  d୨ ∈ D ⋃ D′  

returns the set of workflow tasks that consume d୨ as their input.   

 DS: T →  D ∪ Dᇱ is the task-dataset function. DS(t୩),  t୩ ∈ T 

returns the set of datasets that are consumed by t୩ as its input. The datasets can 

be either original or generated datasets. 

To evaluate and compare TPS with the others proposed algorithms 

Workflow Communication Cost is applied as defined in the previous chapter. 

We consider task interdependency as the separation measurement. Two 

tasks are interdependent and should be collocated in the same virtual machine if 

they simultaneously need many datasets as their inputs. The definition for the 
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interdependency of a pair of tasks is as follows: 

Definition 4.2.3 (Task Interdependency tp). We consider the size of 

common datasets that a pair of tasks gets them as input to define the task 

interdependency of the tasks. Task interdependency value is divided by the total 

size of workflow datasets in order to be normalized in the range of [0 1]. 

Formally, given two tasks t୩ଵ and t୩ଶ, the task interdependency is calculated by: 

Which S(D) is the sum of the sizes of datasets in D. In this way, two tasks are 

interdependent once they have at least one common dataset as input for both of 

them. Two tasks have a higher interdependency when they consume more size 

of common datasets and the greater the size of common datasets is, the higher is 

the task interdependency of tasks.  

For instance, if size of datasets is S(dଵ) = 10MB, S(dଶ) = 35MB,

S(dଷ) = 110MB, S(dସ) = 60MB and S(dହ) = 55MB, then the set of tasks that 

consume dଵ is 𝐷𝑆(𝑡ଵ) = {𝑑ଵ , 𝑑ଷ} and 𝑑ଶ is 𝐷𝑆(𝑡ଶ) =  {𝑑ଵ,𝑑ଶ, 𝑑ଷ}  and the task 

interdependency between 𝑡ଵ and 𝑡ଶ is 

𝑡𝑝(𝑡ଵ, 𝑡ଶ) =  
𝑆(𝐷𝑆(𝑡ଵ)  ∩  𝐷𝑆(𝑡ଶ))

𝑆(𝐷)
=

𝑆({𝑑ଵ,𝑑ଷ} ∩  {𝑑ଵ,𝑑ଶ, 𝑑ଷ})

𝑆({𝑑ଵ, 𝑑ଶ,𝑑ଷ , 𝑑ସ, 𝑑ହ})
 

 =
𝑆(𝑑ଵ) + 𝑆(𝑑ଷ)

𝑆(𝑑ଵ) + 𝑆(𝑑ଶ) + 𝑆(𝑑ଷ) + 𝑆(𝑑ସ) + 𝑆(𝑑ହ)
= 0.44.   

Task interdependency matrix (TM) is defied similar to data 

interdependency matrix. In the interdependency matrix, rows and columns are 

𝑡𝑝(𝑡௞ଵ, 𝑡௞ଶ) =  
𝑆( 𝐷𝑆(𝑡௞ଵ) ∩ 𝐷𝑆(𝑡௞ଶ) )

𝑆(𝐷)
                          (3) 
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the workflow tasks and the value of interdependency matrix is the task 

interdependency between two tasks. For instance, task interdependency matrix 

of workflow in Example 1 is as follows:  

𝑡ଵ        𝑡ଶ            𝑡ଷ          𝑡ସ         𝑡ହ

 𝑇𝑀 =

𝑡ଵ

𝑡ଶ

𝑡ଷ

𝑡ସ

𝑡ହ ⎝

⎜
⎛

0.44
0.44
0.00

0.44
0.54
0.13

 0.00 0.00 0.00  
 0.13 0.13 0.00  

  0.22 0.35 0.00   
0.00 0.13   0.35 0.55 0.20   
0.00 0.00 0.00 0.20 0.20 ⎠

⎟
⎞ 

TPS partitions and distributes the original datasets into all appropriate 

virtual machines in the Cloud. Then the related tasks will be assigned to the 

corresponding virtual machine so that their required datasets are stored there. In 

this way, the total amount of data movement between virtual machines is 

decreased and the overall workflow execution time will be reduced. Task 

placement scheme is defined to represent the place of each workflow dataset in 

a virtual machine. A task placement scheme is defined formally as follows: 

Definition 4.2.4 (Task Placement Scheme 𝚽). Suppose there are I 

virtual machines and K tasks, a task placement scheme is represented by a K-

element vector Φ such that Φ(t୩) indicates the virtual machine to which t୩ is 

placed. For example if the task placement scheme is Φ = (1, 2, 1, 2, 3) it means 

tasks tଵand tଷ are placed in virtual machine vmଵ (Φ(tଵ) =  Φ(tଷ) = vmଵ), tasks 

tଶand tସ in virtual machine vmଶ (Φ(tଶ) =  Φ(tସ) = vmଶ) and the tasks tହ in 

virtual machine vmଷ ( Φ(tହ) = vmଷ).  

We consider all the workflow tasks are flexible and there are no fixed 
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tasks because moving computation task to datasets is often cheaper than moving 

datasets to computation task nodes. To define a good measurement to compare 

separation between virtual machines, task interdependency within and between 

virtual machines are defined as follows: 

Definition 4.2.5 (Within-VirtualMachine Task Interdependency 

𝐕𝐌𝐓𝐖). 

𝑉𝑀𝑇ௐ(𝛷) =  ෍ ෍ 𝑡𝑝(𝑡௞ଵ, 𝑡௞ଶ) 

ః(௧ೖభ)ୀ௩௠೔

ః(௧ೖమ)ୀ௩௠೔

ூ

௜ୀଵ

                                           (4)  

where tp(t୩ଵ, t୩ଶ) is the task interdependency between task t୩ଵand t୩ଶ , I 

is the maximum number of virtual machines in the Cloud.  

Definition 4.2.6 (Between-VirtualMachine Task Interdependency 

𝐕𝐌𝐓𝐁). 

𝑉𝑀𝑇஻(𝛷) =  ෍ ෍ 𝑡𝑝(𝑡௞ଵ, 𝑡௞ଶ) 
ః(௧ೖభ)ୀ௩ ೔భ
ః(௧ೖమ)ୀ௩ ೔మ

(ூ,ூ)

௜భஷ௜మ
(௜భ , ௜మ)∈(ூ,ூ)

                                         (5) 

To achieve the task placement goal, TPS uses heuristic information for its 

search direction of finding the best task placement scheme. Heuristic information 

should consider both within and between virtual machine interdependency. The 

heuristic is defined in TPS as follows: 

Definition 4.2.7 (Task Interdependency Greedy TG). The TG heuristic 

biases TPS to select the task placement scheme with higher task 

interdependency. It is defined as: 
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𝑇𝐺(𝛷) =
𝑉𝑀𝑇ௐ(𝛷) + 1

𝑉𝑀𝑇஻(𝛷) + 1
                                                           (6) 

In this formula, the numerator measures Within-VirtualMachine Task 

Interdependency and the denominator measures the Between-VirtualMachine 

Task Interdependency. The bias 1 is set to avoid divided-by-zero in the case that 

the task interdependency between virtual machines get zero. A good task 

placement scheme has a higher TG. Therefore, the output of TPS is a task 

placement scheme with the highest TG. In our system model, we consider a 

system constraint in terms of task which is defined as follows:  

Non-replication constraint: Once a task is placed into a specific virtual 

machine, it is not allowed to place it into another virtual machine as task 

replication is not in the scope of this version of TPS. 

Definition 4.2.8 (Task Placement Solution). The task placement 

solution for big data workflow, W, to execute in a Cloud computing 

environment, C, is to select a task placement scheme Φ ∈ Q to minimize the 

workflow communication cost (WCC) under the virtual machine storage 

capacity and non-replication constraints. In the next section, we explain our task 

placement strategy, TPS, in detail. 

4.3 Workflow Task Placement Algorithm-TPS 

Like BDAP, TPS starts with calculating the task interdependency matrix. 

Then, it generates a set of task placement schemes randomly and calculates their 

heuristic values. In the following, for each task placement scheme, TPS applies  
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Algorithm 2.  Task Placement (TPS)   

Input:  

       T:    set of workflow tasks,  

       TP: task interdependency matrix,  

       popsize:           size of population, 

       er:                     rate of elitism, 

       cr:                     rate of crossover, 

       mr:                    rate of mutation, 

       num_iteration: number of iterations, 

Output:  The best task placement scheme, 𝛷௕௘௦௧ 

1. Begin 

2.     for i = 1 to popsize do 

3.          𝛷 ← Generate a task placement scheme randomly; 

4.        𝑃𝑜𝑝 ← < 𝛷, 𝑇𝐺(𝛷) >; 

5.     end for 

6.     idx = 0;  

7.     while ( idx ≤ num_iteration ) do 

8.         ne = popsize × er;  //  number of elitism 

9.       𝑃𝑜𝑝ா ← The best ne task placement schemes in Pop; 

10.         nc = popsize * cr; // number of crossover   

11.         for i =1 to nc do 

12.            randomly select two task placement scheme 𝛷஺ and 𝛷஻ from Pop; 

13.            generate 𝛷C and 𝛷D by one-point crossover for tasks of 𝛷஺ and 𝛷஻; 

14.            𝑃𝑜𝑝஼ ← < 𝛷஼ , 𝑇𝐺(𝛷஼) >; 

15.            𝑃𝑜𝑝஼ ←< 𝛷஽ , 𝑇𝐺(𝛷஽) >; 

16.         end for 

17.          nm= popsize × mr;// number of mutation   

18.          for i =1 to nm do 

19.              select a task placement scheme 𝛷௝ from 𝑃𝑜𝑝஼ ; 

20.      𝛷௝
ᇱ ← mutate randomly a virtual machine position  number in 𝛷௝  ; 

21.              𝛷௝ ← 𝛷௝
ᇱ; 

22.           end for 

23.           Pop ← 𝑃𝑜𝑝ா  and 𝑃𝑜𝑝஼; 

24.           idx = idx +1;   

25.     end while 

26.     return the best task placement scheme 𝛷௕௘௦௧; 

37. End 



55 

 

 

three main operators, Selection, Crossover, and Mutation sequentially to 

generate possibly better schemes with higher heuristic values. At the end of the 

algorithm, the best observed task placement scheme is recorded in Φୠୣୱ୲ and will 

be returned as the output of TPS. Selection, crossover and mutation operators are 

defined in chapter 3. Algorithm 2 represents TPS. 

4.4 Experiment and Case Study 

4.4.1 Case Study 

To evaluate performance of our proposed task placement approach (TPS) 

we compare it with k-means clustering and Random strategy. We developed a 

real Cloud-based workflow for OpenXC dataset to compare any number of car 

drivers with each other.  

In DATAVIEW [17], we developed an OpenXC workflow, that consists 

of six individual workflow tasks. For each individual car driver we calculated 

her driving brehavior. This workflow has two main stages, in the first stage it 

computes how unsafe the driver is based on the braking ability and in the second 

stage it evaluates the vehicle speed of the driver  in order to to compute the risk 

level of the driver. 

Description of the workflow tasks are as follows: 

Task 1 – getDriverInfo: This workflow task gets the OpenXC raw data set 

as well as car driver id,  and returns the signal details for that particular car driver.  

Task 2 - BrakeSpeedDistribution: This step is used to compute how 

unsafe the driver is, based on her braking ability. For every pair of brake pressed 
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(true and false value), the workflow will output the total time driven without 

pressing brake and the top 5 vehicle speed.  

Task 3 – getAddByLatLon: In this step, the address where the signal is 

captured is calculated by using the Google API and Latitude and Longitude 

signal.  

Task 4 – chkHighway: This task is used to compute decide if the car is on 

highway or not by using a google places API. It is  based on the address where 

the signal is captured.  

Task 5 – getSpeedLimit: This task is used to get the speed limit posted on 

the road. This workflow will automatically set the speed to 65 if it is highway. If 

not highway it will set the speed limit to 45. 

Task 6 –speedCheck: This task is to compare the top 5 actual vehicle 

speed with the speed limit posted on the road in order to compute the total 

number of times the driver exceeded the speed limit.  

Task 7 –compareDriver: This task is used to compare different drivers 

based on their speed distribution and braking ability. 

Figure 4-2 shows the OpenXC workflow for comparing driving behavior 

for three car drivers. There are 6 individual tasks and 13 datasets (both original 

and intermediate datasets) for each car driver. To create a workflow with the 

large number of tasks and data products, we repeat the above workflow with a 

different number of car drivers under the assumption that each task can be 

executed on different virtual machines. For our experiments, we consider 2, 10, 
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20, 50 and 100 car drivers with a total number of tasks, [13, 61, 121, 301, 601]. 

In our experimental setting, we used virtual machines in the range of 5-25 with 

a range of 5GB-20GB of storage capacity (as shown in Table 4-1). The input 

OpenXC datasets are synthetic datasets built from the data recorded by real car 

drivers [18]. We demonstrate the performance of our proposed task placement 

algorithm by comparing it with k-means clustering, and a randomly generated 

task placement approaches with the average of the workflow communication 

cost defined in section 3. Based on our experiments, we observe that our results 

shown in Table 4-2 outperform the other task placement schemes. 

 

 

 

Table 4-1 Description of Task and virtual machine of the experiment.

Table 4-2 Default setting for the TPS algorithm.

Overall task and virtual machine 

# of tasks 

# of virtual machines 

virtual machines computing capacity 

data transfer rate between virtual machines 

[13, 61, 121, 301, 601] 

[5, 10, 15, 20, 25] 

5GB – 20GB 

5MB per second 

Overall dataset and virtual machine 

Maximum population size 

Initial population 

Maximum generation 

Crossover probability 

Mutation probability 

TG threshold 

100 

Randomly generation 

100 

0.8-0.9 

0.3-0.5 

0.01-0.1 



58 

 

 

4.4.2 Implementation 

In our DATAVIEW system, we integrated the big data workflow engine 

subsystem with FutureSystems academic cloud provider in order to 

automatically provision virtual machines to execute big data workflows in the 

cloud. We implemented bash scripts to automatically provision virtual machines 

by first creating a new image and configure both the hardware and software 

settings.  

Workflow execution is transparent to our data scientists. They can just 

create and run any arbitrary workflow and the system deploys a set of virtual 

machines, datasets and moves workflow tasks to the corresponding virtual 

Figure 4-2 OpenXC Workflow for Comparing Three Car Drivers. 
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machine. At design time, our TPS algorithm parses the specification of the 

workflow and identifies an optimal mapping of the workflow tasks to the 

corresponding virtual machines. At run time, the DATAVIEW system moves the 

workflow task to the corresponding virtual machines based on the mapping 

generated by TPS. Finally, the workflow is executed in a distributed manner to 

improve the performance of the TPS. Please note that workflow scheduling is 

out of the scope of this study. The order of workflow tasks execution (sequential, 

pipeline or parallel) is not specified by TPS. TPS can be invoked by any 

workflow scheduler to obtain an optimal placement and therefore minimize 

workflow makespan. For our experiments in three approaches, we ran workflow 

tasks sequentially from entry task till the exit/final task. Table 4-3 shows the 

description of running the OpenXC workflow of Figure 4-2. Table 4-4 shows 

some of the result of applying  TPS for the execution of workflow in Example 1. 

Table 4-3 Some results of applying TPS for the execution of workflow in Example1. 

Task Name Execution 

Time (hrs) 

Input Data 

Size(GB) 

Output Data 

Size(GB) 

VM# 

getDriverInfo 0.353 10.00 1.00 vm1 

BreakSpeedDistribution 1.514 1.00 0.098 vm2 

getAddbyLatLon 0.513 1.00 0.017 vm1 

chkHighway 0.012 0.017 0.019 vm3 

getSpeedLimit 0.025 0.019 0.024 vm1 

speedChk 0.001 0.122 0.098 vm2 

computeSimilarity 1.260 0.290 0.001 vm1 
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4.4.3 Results 

Figure 4-3 shows the Workflow Communication Cost (WCC), in terms 

of hour by varying the number of tasks and fixing the number of virtual 

machines. Our experiments show that WCC cost increases with a large number 

of tasks and data products in both algorithms. However, it can be seen clearly 

that our strategy reduces WCC compared to the k-means clustering and Random 

algorithms.  

In the next step, we calculate WCC by varying the number of virtual 

machines and fixing the number of tasks (Figure 4-4). Although WCC is 

increased by increasing the number of virtual machines, the increasing rate of 

our strategy is slower than the k-means clustering and Random strategies. In 

addition, it shows at some point, provisioning new Cloud resources like virtual 

machines does not affect the workflow performance as we may have many idle 

virtual machines 

 

Table 4-4 OpenXC workflow of one car driver running in DATAVIEW. 

The best task placement scheme in the : 

First population <t#, vm#> Last (10th) population <t#, vm#> 

<t1,vm1><t2,vm2><t3,vm3><t4,vm3><t5,v

m1>  

TG = 0.11  and WCC = 0.0101 hr 

<t1,vm1><t2,vm1><t3,vm2><t4,v

m1><t5,vm3> 

TG = 2.10  and WCC = 0.0061 hr 

<t1,vm2><t2,vm1><t3,vm3><t4,vm1><t5,v

m3>  

TG = 0.09 and WCC = 0.0176 hr 

<t1,vm2><t2,vm2><t3,vm1><t4,v

m1><t5,vm3> 

TG = 2.48  and WCC = 0.0043 hr 
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Figure 4-3 Workflow Communication Cost (hours) by varying the number of 
workflow tasks. 

Figure 4-4 Workflow Communication Cost (hours) by varying the number of 
virtual machines. 
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5 TASK SCHEDULING IN BIG DATA 
WORKFLOWS 

5.1 Introduction 

Workflow scheduling has remained a critical component of modern data-

centric workflow management systems. Cloud computing, which provides 

practically unlimited computing and storage resources, has created a new 

generation of data-centric workflows, called big data workflows, and the need 

for new workflow scheduling algorithms that consider the characteristics of 

cloud computing, such as heterogeneous virtual machines, the elastic resource 

provisioning model, and the pay-as-you-go pricing model, as well as the time 

and monetary cost of transfer of large amount of data. In this study, we consider 

one sub-problem of the general big data workflow scheduling problem, in which 

a deadline D is given for a workflow W, and the goal is to minimize the monetary 

cost of running W in the cloud while satisfying the given deadline.  

The current trend in the use of cloud-computing paradigms for big data 

querying and analytics has opened up a new set of challenges to the workflow-

scheduling problem [55]. The cloud-computing environment provides an easily 

accessible and scalable framework that guides the process of leasing an 

unbounded set of resources with heterogeneous types. The workflow engine that 

is mainly responsible for the orchestration of the execution of the workflow, will 

now need to make more intelligent decisions about when and where to execute 
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the tasks in a workflow. The existing big data workflow engine [27, 30], has a 

limitation on the assignment of resources to a workflow at design time based on 

the structure of the workflow. Due to the nature of big data processing in those 

workflows, the tasks are compute and data intensive, and hence there is a strong 

need for scheduling those tasks in different types of machines in the cloud by 

making the necessary decisions at run time. 

The scheduling decision making process needs to be user interactive in 

order to emphasize on the usability of the system. Existing approaches such as 

[61, 62], do not consider any QoS constraints that relate to the update of user run 

time requirements. We took a different approach to schedule the workflow based 

on the user defined deadline constraints. We performed a single objective 

optimization task to minimize the execution cost of the workflow with an 

intuition that based on the provided deadline the cost can vary. It is based on the 

assumption that the provided deadline the cost can vary over time and that the 

workflow costs are smaller for large workflows than small ones. We proposed a 

new Big data wOrkflow scheduleR undeR deadlIne conStraint (BORRIS) that is 

used to minimize the execution cost of the workflow under a provided deadline 

constraint in a heterogeneous cloud computing environment. We have 

implemented the proposed algorithm in our big data workflow system called 

DATAVIEW and the experimental results show the competitive advantage of 

our approach. 
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5.2 System Model 

To execute a big data workflow in the cloud, we need to model the cloud 

first. A cloud computing environment is modeled as follows: 

Definition 2.1 (Cloud Computing Environment C): A cloud computing 

environment is a 6-tuple C(R, RT, RC, FB, FR, RS), where 

 R is a set of resources. Each individual resource is denoted by Ri 

in the cloud computing environment. 

 RT is a set of resource type such as {"t2.nano”, “t2.micro”, 

“t2.small”, “t2.medium, “t2.large”, …}. 

 RC: R→ Q+ is the resource usage time function. RC(Ri), Ri ∈ R 

gives the time for the resource usage Ri in the cloud computing environment. 

The resource with the minimum RC is called Rslowest and the resource with the 

maximum RC is called Rfastest. 

 FB: R × R → Q+ is the data communication rate function. FB(Ri1, 

Ri2), Ri1, Ri2 ∈ R gives the data communication rate between Ri1 and Ri2. Q+
0 is 

some pre-determined unit like bytes per second. This function is used to calculate 

the data movement time between two resources in the cloud.  

 FR: R → Q+ is the resource computing speed function. FR(Ri), Ri ∈ 

R gives the speed for the computing resource Ri measured in some pre-

determined unit like million instructions per machine cycles or million 

instructions per nanoseconds.  

 FS: RT → R is the resource provisioning function. FS(Rt), Rt ∈ RT 
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returns a resource instance of the resource type of Rt.  

A big data workflow can be defined formally as: 

Definition 2.2 (Big Data Workflow W): A big data workflow can be 

formally defined as a 4-tuple W = (T, D, FT, FD), where 

 T is a set of tasks in the workflow W. Each individual task is 

denoted by Tk. 

 D = {<Tk1, Tk2> | Tk1, Tk2∈T, k1 ≠ k2; k1, k2 ≤ |T|, Tk2 consumes 

data Dk1, k2 produced by Tk1} is a set of data dependencies. Dk1,k2 denotes that an 

amount of data is required to be transferred after Tk1 completes and before Tk2 

starts. Dk represents all the outgoing edges from task Tk. 

 FT: T → Q+ is the execution time function. FT(Tk); Tk ∈ T gives the 

execution time of a task Tk, measured in some pre-determined unit like million 

instructions per machine cycles or million instructions per nanoseconds. 

 FD: D → Q+ is the data size function. FD(Dk1,k2), Dk1, k2 ∈ D gives 

the size of a dataset Dki,k2, measured in some predetermined unit like bits or bytes.  

To schedule a big data workflow to a set of cloud resources, more 

measurements like number of instructions of tasks and data sizes are required. 

Therefore, we define big data workflow graph as a weighted directed acyclic 

graph that includes a set of tasks and their data dependencies. The weights of the 

tasks and data edges are based on the average task computation and average data 

communication time, respectively. In addition, the workflow can be partitioned 

into a set of partitions such that there is no data dependency between all the tasks 
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of each partition. A big data workflow graph can be defined formally as: 

Definition 2.3 (Big Data Workflow Graph G): Given a workflow W in 

a cloud computing environment C, a big data workflow graph G, represents a 

weighted directed acyclic graph with 14-tuple G(T, D, R, Fc, 𝐹௖̅, Fp, 𝐹௣̅, Fm, 𝐹௠ഥ , 

Fn, 𝐹௡ത , 𝑃, 𝑇𝐿, 𝑅𝑇), where 

 The vertices of the graph represent a set of tasks T. 

 The edges of the graph represent a set of data dependencies D. 

 R is a set of resources in the cloud computing environment. 

 Fc: D×R×R → Q+
0 is the data communication cost function; Dk1,k2 

∈ D; Ri1, Ri2 ∈ R gives the data communication cost of Dk1,k2 from resource Ri1 

to resource Ri2. 

 𝐹௖̅: D → Q+
0 is the average data communication cost function. 𝐹௖̅ 

(k1, k2), Dk1,k2 ∈ D gives the average data communication cost of Dk1,k2 in 

resources R, which is taken as the weight of edge in the graph G. The weight of 

the edge is 0 for same resource. 

 Fp: T×R → Q+ is the task computation cost function. Fp(Tk, Ri), Tk 

∈ T, Ri ∈ R gives the computation cost of Tk on resource Ri. 

 𝐹௣̅: T → Q+ is the average task computation cost function, 𝐹௣̅ (Tk) 

gives the average computation cost of task Tk, which is taken as the weight of 

vertex in the graph G.  

 Fm: D×R×R → Q+
0 is the data communication time function; Dk1,k2 

∈ D; Ri1, Ri2 ∈ R gives the data communication time of Dk1,k2  from resource Ri1 
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to resource Ri2. 𝐹௠ഥ : D → Q+
0 is the average data communication time function. 

𝐹௖̅ (k1, k2), Dk1,k2 ∈ D gives the average data communication time of Dk1,k2 in 

resources R, which is taken as the weight of edge in the graph G. The weight of 

the edge is 0 for same resource. 

 Fn: T×R → Q+ is the task computation time function. Fp(Tk, Ri), Tk 

∈ T, Ri ∈ R gives the computation time of Tk on resource Ri. 

 𝐹௡ത : T → Q+ is the average task computation time function, 𝐹௣̅ (Tk) 

gives the average computation time of task Tk, which is taken as the weight of 

vertex in the graph G.  

 P: N → T is the partition task function, P [j] or Pj gives all the tasks 

of partition j. RPj represents the set of resources of partition Pj. 

 TL: T → N is the task partition function, TL [Tk] or TLTk gives the 

partition number of task Tk. 

 RT: P → RT is the partition resource type function. RT[Pj] gives 

the resource type that is assigned to partition j. 

Workflow makespan is the total time needed to execute the whole 

workflow starting from the beginning task. Our goal is to come up with an 

optimal workflow schedule such that the workflow execution cost is minimized 

and the workflow makespan meets the given deadline. To this end, we need to 

model workflow cost in order to be able to measure both workflow makespan 

and excetion cost. As we partition the workflow into a set of partitions, the 

workflow makespan will be the summation of the execution times of all 
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partitions. We define the workflow makespan as follows: 

Definition 2.4 (Workflow Makespan EC): Given a workflow W in a 

cloud computing environment C, a workflow execution makespan, represents the 

execution time of the workflow with 5-tuple EC(CT, CTതതതത, minCT, maxCT, CC), 

where 

 CT: Partition × R → Q+ is the workflow partition completion time 

function. CT(Pj), Pj ∈ Partition gives the maximum of task computation time of 

all the tasks Tk ∈ Pj and the maximum of average data communication time of all 

the outgoing edges from all the tasks Tk ∈Pj. We formally define CT as: 

 CT (Pj, Ri) = 𝑀𝑎𝑥்ೖ∈୔୨{𝐹௡ (Tk, Ri)} +𝑀𝑎𝑥்ೖ∈୔୨{𝐹௠(Dk, k1, Ri, Ri1)} 

 CTതതതത: Partition → Q+ is the workflow average completion time 

function. CTതതതത (Pj), Pj ∈ Partition gives the max of average task computation time 

of all the tasks Tk ∈ Pj and the average data communication time for all the 

outgoing edges from all the tasks Tk ∈ Pj. We formally define CTതതതത as: 

CTതതതത (Pj) = ∑ 𝐹௡ത
௄
௞ୀଵ  (Tk) +  ∑ 𝐹௠ഥ

௄
௞ୀଵ,௞ଵୀଵ

௞ ஷ௞ଵ

 (Dk, k1) 

 minCT: Partition → Q+
0 is the minimum workflow partition 

completion time function. minCT(Pj), Pj ∈ Partition gives the minimum task 

computation time of all the tasks Tk ∈ Pj and the minimum data communication 

time for all the outgoing edges from all the tasks Tk  ∈ Pj. We formally define it 

as: 

minCT (P୨) = ∑ 𝐶𝐶൫𝑇௞ , 𝑅௙௔௦௧௘௦௧൯்ೖ∈ ௉ೕ
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 maxCT: Partition → Q+
0 is the maximum partition completion 

time function. maxCT(Pj), Pj ∈ Partition gives the maximum task computation 

times of all the tasks Tk ∈ Pj and the maximum data communication times for all 

the outgoing edges from all the tasks  Tk ∈ Pj. We formally define maxCT as: 

maxCT(𝑃୨) = ∑ 𝐶𝐶(𝑇௞ , 𝑅௦௟௢௪௘௦௧)்ೖ∈ ௉ೕ
 

 CC: Partition × R → Q+ is the workflow partition completion cost 

function. CC( Pj , Ri), Pj ∈ Partition gives the sum of task computation cost of all 

the tasks Tk ∈ Pj assigned to Ri as well as the data communication cost for all the 

outgoing edges from all the tasks  Tk ∈ Pj. We formally define CC as: 

CC (Pj , Ri1) = ∑ F୮(T୩, R୧ଵ)୏
୩ୀଵ  + ∑ ∑ Fୡ( 𝐷୩,୩భ

, R୧ଵ, R୧ଶ) ୏
୩ୀଵ,୩ଵୀଵ

୩ ஷ୩ଵ

୍
୧ଵ,୧ଶୀଵ
୧ଵ ஷ୧ଶ

 

The critical path in the workflow can be computed by the SCPOR 

algorithm [62]. We define partition makespan as follows: 

Definition 2.5 (Workflow Partition Makespan PM): Given a workflow 

W in a cloud computing environment C and deadline D, a workflow partition 

makespan, represents the sub-deadline provided to each partition of the 

workflow with 6-tuple PM(SD, PRT, ACT, Earliness, Lateness, Threshold,), 

where 

 SD: Partition → Q+ is the sub-deadline partition function. SD(Pj), 

Pj ∈ Partition gives the sub-deadline assigned to the partition Pj. Supposedly 

CTM is the makespan of the critical path in the workflow, then SD can be 

calculated formally as follows: 
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SD[P୨] = (𝑀𝑎𝑥்ೖ ∈ ୔୨൛𝐶𝑇തതതത൫𝑃௃൯ൟ / CTM) * D 

 PRT: Partition × R × SD × Threshold → RT is the resource 

partition identifier that is used to identify the slowest resource for executing the 

tasks in a partition while still managing to meet the deadline of executing the 

tasks in the partition to the sum of sub-deadline and threshold allocated to the 

partition.  

 ACT: Partition → Q+ is the actual completion time that is used to 

compute the total time for completing all the tasks in a partition. It can be 

formally defined as: 

ACT (Pj) = ∑ 𝐶𝑇൫𝑇௞ , Fୗ(R୘ൣP୨൧)൯௄
௞ୀଵ

்ೖ∈௉ೕ

 

 Earliness: Partition → Q+ is the earliness partition function. 

Earliness (Pj), Pj ∈ Partition gives the earliness time of the partition Pj. It can be 

calculated as follows:  

Earliness (Pj) = Max {0, SD(Pj) - ACT(Pj)}. 

 Lateness: Partition → Q+ is the lateness partition function. 

Lateness(Pj), Pj ∈ Partition gives the lateness time of the partition Pj. It can be 

calculated as follows: 

Lateness (Pj) = Max {0, ACT (Pj) - SD(Pj)} 

 Threshold: Partition → Q+ is the threshold partition function. 

Threshold(Pj), Pj ∈ Partition gives the threshold time of the partition Pj. It can be 

calculated as follows:  
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Threshold(Pj) =Max{0,  SD(Pj+1) – minCT (Pj+1)} 

Our goal is to minimize workflow execution cost while satisfying the 

deadline constraint. We formally define our objective function and the 

constraints as follows: 

Definition 2.6 (Workflow Cost Minimization): Given a workflow W in 

a cloud computing environment C, and deadline D, makespan of workflow is the 

objective function and can be defined as follows 

Makespan = ∑ ∑ 𝐶𝑇(𝑃௝ , 𝑅௜
ூ
௜ୀଵ )

௃
௝ୀଵ  × 𝑋௝௜ 

where, 

𝑥௝௜ = ൜
1, 𝑖𝑓 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑃௝  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑅௜  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                
 

such that the following constraints are satisfied: 

1) ∑ ∑ 𝐶𝑇(𝑃௝ , 𝑅௜
ூ
௜ୀଵ )

௃
௝ୀଵ  × 𝑋௝௜ <= D 

2) ∑ 𝑋௝௜
௃
௝ୀଵ  = 1 for all the tasks in partition j assigned to the resource Ri 

∈ R. 

There are three cases to consider: 

1) if D < ∑ 𝑚𝑖𝑛𝐶𝑇(𝑃௝)௃
௝ୀଵ , then we can satisfy the deadline constraints 

and so a solution is to assign all the partition tasks to the slowest resource.  

2) if D > ∑ 𝑚𝑎𝑥𝐶𝑇(𝑃௝)
௃
௝ୀଵ , then we satisfy the deadline constraint by 

assigning all the partition tasks to the fastest resource as a solution.   

3) if ∑ 𝑚𝑖𝑛𝐶𝑇(𝑃௝)௃
௝ୀଵ  <= D <= ∑ 𝑚𝑎𝑥𝐶𝑇(𝑃௝)௃

௝ୀଵ , then we use our strategy 

to find the optimal solution.  
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5.3 The BORRIS Algorithm 

The main steps of the BORRIS algorithm are shown in Figure 5-1. 

Workflow specification and deadline are the two required inputs for BORRIS. 

In the first step, BORRIS parses the given workflow specification and assigns a 

non-negative number (weight) to each workflow task and edge to generate a 

weighted DAG. We use the number of instructions in of tasks, and data 

movement size of the edges along with the cloud resource types information in 

order to generate their weights. The average computation times are calculated as 

the weights of tasks and the average data movement times are calculated as the 

weights of edges. 

After generating the weighted DAG for the workflow, BORRIS partitions 

the workflow into several partitions such that there is no data dependency (edge) 

between the tasks inside each partition however, there is a possibility to have 

data dependencies between the partitions. In the next step, BORRIS distributes 

Figure 5-1 BORRIS flowchart. 
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the given deadline and assigns initial sub-deadlines to all of the partitions. For 

the deadline distribution, BORRIS computes the maximum time needed to 

execute the workflow (i.e. workflow makespan) by calculating the makespan of 

the critical path. Then, it assigns the sub-deadlines to all of the partition based 

on the workflow makespan and average completion time of each partition. In the 

next step, the maximum and minimum completion times for each partition are 

calculated. The maximum completion time is the completion time of the partition 

once all its tasks are assigned to the slowest cloud resource and the minimum 

completion time is the completion time once all its tasks are assigned to the 

slowest cloud resource.  

In addition, BORRIS computes a threshold value for each partition by 

taking away some extra time from their subsequent partitions. The initial sub-

deadline of each partitions is increased by the threshold and it provides more 

room to select a slower resource for the partition and therefore the execution cost 

of the partition is minimized. For the next step, BORRIS goes through all the 

partitions sequentially and complete the schedule map by assigning all the 

partitions on to the most appropriate cloud resources.  

After identifying the appropriate resource type for the partition, each task 

in the partition is scheduled to execute in a resource instance of the resource type 

in parallel. The actual completion time, the earliness and lateness values for each 

partition is calculated after partition execution. Then BORRIS adjusts the sub-

deadline of the subsequent partition by using these earliness and lateness values. 
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If the partition is the last partition, BORRIS does not need to calculate the 

earliness and lateness values as there is no subsequent partition that uses them. 

For example, let us consider the workflow of Figure 5-2 with 200 minutes 

as the deadline. This workflow consists of seven tasks as the vertices and ten 

data dependencies as the edges. The workflow is partitioned into three partitions 

as P1={T1, D1,2, D1,3, D1,4, D1,5, D1,6}, P2={T2-T6, D2,7, D3,7, D4,7, D5,7, D6,7} and 

P3={T7}. Once the weighted DAG of the workflow (Table 5-1.b,c) is computed, 

then the initial sub-deadline, maximum and minimum completion time as well 

as the threshold value of the three partitions are calculated and shown in Table 

5-1.d.  

Table 5-1.a shows a list of cloud resources parameters including five 

resource types with their computation capacities and the associated costs.  

Figure 5-2 Workflow example with seven tasks and ten data dependencies. 
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In the first step, the resource type, “t2.nano” is computed for the first 

partition as it is the slowest resource that can meet the partition sub-deadline, 15. 

By assigning the first partition to "t2.nano" and calculating its actual completion 

time, earliness value is 0 and lateness value is 5. These earliness and lateness 

values are passed to the next partition to update the sub-deadline of the second 

partition. After this sub-deadline adjustment for partition 2, "t2.small" is selected 

as the slowest resource type for this partition. The earliness and lateness values 

of the secondpartition is calculated after execution the entire partition as earliness 

= 4 and lateness = 0. In the end, "t2.large" can be selected for the last partition 

as it is the slowest resource that meets the sub-deadline. Finally, the total 

completion cost of workflow execution which is minimized is $0.113. The 

earliness and lateness values are shown in Table 5-1.e. 

BORRIS assigns the workflow tasks onto the appropriate cloud resource 

such that it minimizes the workflow execution cost while meeting the deadline 

Table 5-1 a) Cloud resource catalogue, b) Task computation cost c) Data 
communication cost, d) Initial budget allocation and e) Final budget allocation. 
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constraints. The BORRIS algorithm is presented as Algorithm 1. Workflow 

specification and deadline are the two required inputs. The output is a set of pairs 

(<task, resource>) for all the tasks which indicates the resource instances for 

executing of all the workflow tasks. In the first step, BORRIS parses the given 

workflow in order to generate the weighted DAG (line 4). Then the workflow is 

partitioned into several partitions (line 5). In line 6, the critical path of the 

workflow is calculated. The total completion time of the workflow is calculated 

based on the completion time of the tasks in the critical path (lines 7-10). To 

identify the appropriate recourse for each tasks the algorithm evaluates all the 

partitions sequentially (lines 11-31). In lines 12-13, an initial sub-deadline is 

assigned to the partition. In addition, the minimum and maximum completion 

times of the partition are calculated (lines 14-15). If it is not the last partition 

(line 16), BORRIS then calculates the threshold (line 17) and the slowest 

resource type for all the tasks in the partition. It then adds this schedule to the 

output schedule map (lines 18-19). In line 20, BORRIS computes the maximum 

of actual completion time (ACT) of the partition tasks. In lines 21-24, BORRIS 

calculates the lateness and earliness values of the partition to update the sub-

deadline of the next subsequent partition. In lines 25-30, if it is the last partition 

then BORRIS updates the sub-deadline of the last partition (line 26). It calculates 

the slowest resource type for it and assigns all of the tasks in the last partition to 

different resource instances of this resource type. In the end, the schedule of the 

last partition is added to the output schedule map (line 27). Finally, in line 30, 
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BORRIS returns the complete schedule that consists of all the tasks and the 

corresponding resources as a set of pairs (<task, resource>). 

1:  Algorithm 1 BORRIS Scheduler 
2:  input: workflow w, deadline D 
3:  output: d, a map storing task-VM assignments. 
4:  parse w and generate a weighted DAG (w). 
5:  tasksByPartition ← partition workflow. 
6: CTL ← get all critical tasks in the workflow w 
7: CTM = 0 // Critical Task Makespan 
8: for each crti ∈ CTL 
9:      CTM = CTM + 𝐶𝑇തതതത(crti) 
10: end for 
11: for each Partition Pj ∈ tasksByPartition 

12:   PMax ← 𝑀𝑎𝑥்ೖ∈ ௉ೕ
{𝐶𝑇തതതത(𝑇௞)} 

13:   SD[P୨] = (PMax / CTM) * D   

14:   minCT [P୨] ← ∑ 𝐶𝐶൫𝑇௞ , 𝑅௙௔௦௧௘௦௧൯்ೖ∈ ௉ೕ  

15:   maxCT [P୨] ← ∑ 𝐶𝐶(𝑇௞, 𝑅௦௟௢௪௘௦௧)்ೖ∈ ௉ೕ
 

16:   if (Pj is not last Partition) then 
17:      Thres [P୨] = Max{0, SD [P୨ାଵ] – minCT [P୨ାଵ]} 

18:      RT [P୨] ←PRT (P୨, R, SD [P୨] + Thres [P୨])  

19:      d ← d ∪ MAP (Tk, Fୗ(RT [P୨])) ∀ 𝑇௞ ∈ 𝑃௝ 

20:      ACT [P୨] = CT(Pj, Fୗ(RT [P୨]))  

21:      Lateness [P୨] = Max {0, ACT [P୨] - SD[P୨]} 

22:      SD[Pj+1] = SD[Pj+1] –  Lateness [P୨] 

23:      Earliness [P୨] = Max {0, SD[P୨] – ACT [P୨]} 

24:      SD[Pj+1] = SD[Pj+1] + Earliness [P୨] 

25:   else if (Pj is last Partition) then 

26:       SD [P୨] = D - ∑ ൫ACT[P୨ଵ] + Lateness[P୨ଵ] ൯
௃ିଵ
௝ଵୀଵ  

27:       RT [Pj] ← PRT (Pj, R, SD [P୨])  

28:       d ← d ∪ MAP (Tk, Fୗ(RT[Pj])) ∀ 𝑇௞ ∈ 𝑃௝ 

30:    end if   
31: end for  
32: return d  

33: end function 
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5.4 Experimental Results 

5.4.1 Performance Evaluation 

In order to evaluate the performance of BORRIS, we developed a big data 

workflow for the automotive domain DATAVIEW platform. This workflow is 

an auto analytics workflow based on the OpenXC datasets. OpenXC data 

analysis is very useful for different stock holders like automotive insurance 

companies to analyze how their customers drive by capturing the large OpenXC 

datasets received from their registered vehicles. As the OpenXC datasets are 

large, it is beneficial to analyze the data using cloud distributed computing 

resources. As a result, there is a need to minimize the execution cost for 

performing the analytics. BORRIS automatically learns the complexity of the 

tasks computation and the data transfer between the tasks from an initial estimate 

and it can be more accurate after each workflow run. 

Here we used Amazon EC2 cloud computing environment to perform our 

experiments. Amazon EC2 provides a framework that can provision and 

deprovision a variety of heterogeneous virtual machines (instances) with 

different compute, memory, storage and network capabilities. Each type of 

instance consists of an hourly cost for resource utilization and the execution time 

is based on the complexity level of the analytics workload. For example, the 

general purpose instance types are listed as: {"t2.nano", 

"t2.micro","t2.small","t2.medium","t2.large"}. The cheapest option and 

resources of type "t2.large" is the fastest and the most expensive option in terms 
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of cost.  

We compared the BORRIS algorithm with two more approaches. The first 

one is the Workflow Responsive resource Provisioning and Scheduling (WRPS) 

algorithm [55]. The WRPS algorithm is the most recent work in the field of 

workflow scheduling. WRPS computes a set of bag of tasks (BoT) such that the 

tasks inside of each BoT are independent and can be executed in parallel. Then, 

it assigns a sub-deadline to each bag of tasks based on the given deadline and 

then schedules them onto heterogeneous types of cloud resources with the goal 

of workflow execution cost minimization and deadline constraints. The cost 

optimization problem is modeled as an unbounded knapsack minimization 

problem in that work.  

In WRPS, the authors assumed the tasks inside each BoT are 

homogeneous. We do not have this limitation and the tasks inside each level can 

be heterogeneous. However, in order to compare our strategy to WRPS we 

developed our OpenXC workflow such that the tasks of each level are 

homogenous.  

One of our main contributions is the application of a sub-deadline 

adjustment technique that updates the assign sub-deadline of the levels after 

completing each level. To demonstrate this technique, we then relaxed BORRIS 

(called BORRIS*) by setting the threshold, the earliness and the lateness to be 

zero. The WRPS algorithm provides an optimization to the BoT by scheduling 

the tasks in a bag to different types of machines but it does not update the sub-
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deadlines of the other BoT based on the executed BoT. In our strategy, BORRIS 

assigns all the tasks inside a given level to the same type of machines. However, 

it has the capabilities of adjusting the sub-deadlines of the remaining levels after 

execution of the current level. 

5.4.2 Results and Analysis 

BORRIS was evaluated against the other two approaches using 10 

distinctive workflows that were developed in the OpenXC domain with different 

levels of complexity and with different provided deadlines. In Table 5-2, we 

presented all the 10 workflows with their complexity levels like the computation 

and data intensity of all the tasks in each of the workflow and the user defined 

deadline. 

We did the experiments by varying the types of machines and presented 

the results for both makespan and cost parameters.  

In Figure 5-3.b, we show that BORRIS outperforms WRPS by roughly 4-

11% margin as the complexity of the workflow increases from w3 to w10.  

 
Table 5-2 Workload details for OpenXC workflow. 
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For the workflows between w1 and w3, which is of least complexity, 

WRPS outperforms BORRIS because WRPS assigns tasks in each bag onto 

resources of different types. The local optimization done at each level 

outperforms the global optimization performed by BORRIS when the 

complexity level is low. 

Figure 5-3 a) Resource utilization; b) Execution cost minimization. 
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We evaluated the results of all three approaches and have demonstrated 

the cost minimization by varying the instance types from K = {5, 10, 15, 20, 25}. 

Please notice in this experiments we provided sufficient deadlines to execute 

each workflow as there are some cases that the provided deadlines are not enough 

to complete the workflow. In Figure 5-3.a, we show the resource utilization in 

the cloud for various K values. The BORRIS algorithm outperforms WRPS 

because the resource is utilized to the maximum extent for the tasks in each level 

since we setup the level dependencies through a system driven threshold value 

and automatically update the sub-deadline with a system driven earliness or 

lateness value at run time. The earliness and lateness are calculated after the 

actual execution time of the previous level. By increasing the number of resource 

types (K) we can observe BORRIS has better performance compared to the other 

algorithms. 
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6 CONCLUSIONS AND FUTURE WORK 
In big data workflows that involve big datasets, either as inputs or 

intermediate outputs, the workflow makespan can vary greatly depending on 

how the tasks and datasets are allocated in the distributed computing 

environment like the Cloud. Therefore, our research focus on the data and task 

placement and schedule for big data workflows that are execution in the 

heterogeneous and distributed execution environment like Cloud. Our main 

contributions in this dissertation are summarized as follows:   

We formalized the data placement problem in big data workflows by 

defining data interdependency concept for clustering the most interdependent 

data products together and place them possibly to the same virtual machine. The 

goal is to minimize data movement among virtual machines during workflow 

execution. Therefore, we considered data interdependency as the separation 

measurement to maximize the data locality. For this, two datasets are 

interdependent and should be collocated in the same virtual machine if they are 

simultaneously needed as inputs by many tasks. We considered the number of 

common tasks that take a pair of datasets as input to define the data 

interdependency of the datasets. To define a good measurement to compare 

separation between virtual machines, data interdependency within and between 

virtual machines were defined. At the end, a data dependency greedy was defined 

based on the data interdependency within and between virtual machines.  

We proposed BDAP, an evolutionary algorithm (EA) which is a generic 
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population-based metaheuristic optimization strategy for data placement in big 

data workflows. The main goal was to minimize the dataset movement between 

virtual machines during the execution of a workflow under the constraint of 

virtual machine storage capacity. In BDAP, a random set of data placement 

schemes were generated in the first step. In the next step, BDAP computed and 

compared the generated schemes by applying a defined heuristic function and 

returned the best scheme. The heuristic function was based on the data 

interdependency within and between the virtual machines in the Cloud. The best 

scheme was the one which maximized the data interdependency within each 

virtual machine and minimized the data interdependency between virtual 

machines. 

We formalized the task placement problem in big data workflows. We 

defined Task Interdependency concept for clustering the most interdependent 

workflow tasks and place them possibly to the same virtual machine. Therefore, 

we considered task interdependency as the separation measurement to maximize 

the data locality. For this, two tasks were interdependent and should be 

collocated in the same virtual machine if they were simultaneously consumed 

many datasets. We considered the size of the total number of common input 

datasets to define the task interdependency of the tasks. Similarly, task 

interdependency within and between virtual machines were defined to define a 

good measurement to compare separation between virtual machines as the 

clusters. At the end, a task dependency greedy was defined based on the task 
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interdependency within and between virtual machines.  

We proposed a generic population-based metaheuristic optimization 

strategy for task placement in big data workflows (TPS). The main goal was to 

minimize the dataset movement between virtual machines during the execution 

of a workflow under the constraint of virtual machine computing capacity. In 

TPS, a random set of task placement schemes were generated in the first step. 

Then, TPS computed and compared the generated schemes by applying a defined 

heuristic function and returned the best scheme. The heuristic function was based 

on the task interdependency within and between the virtual machines in the 

Cloud. The best scheme was the one which maximized the task interdependency 

within each virtual machine and minimized the task interdependency between 

virtual machines. 

We considerd one sub-problem of the general big data workflow 

scheduling problem, in which a deadline D is given for a workflow W, and the 

goal is to minimize the monetary cost of running W in the cloud while satisfying 

the given deadline.  

I plan several improvements and extensions of my work in the future. In 

the following, I briefly describe some of the problems I am particularly interested 

in contributing to work on fundable and applicable problems in the big data area 

by focusing on designing scalable big data applications and algorithms to support 

big data computing and analytics. Some of the future works are as follows: 

Data Placement with Replica for Big Data Workflows in the Clouds. 
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The growth of big data in volume, variety and velocity is faster than Moore's law 

while the demand for more complex data analytics is increasing. We proposed 

BDAP, a data placement strategy for Cloud-based scientific workflows. Big data 

workflows consume and produce huge datasets. Applying data replication can 

reduce data movement as well. So, in future work, I plan to improve BDAP by 

applying data replication techniques. In addition, we considered data placement 

for executing of a single workflow. However, in real world, multiple workflows 

can be executed concurrently. Therefore, I plan to extend BDAP strategy to 

achieve data placement for the execution of multiple workflows simultaneously. 

I am interested in addressing these new works by using metaheuristic 

optimization approaches like Cultural Algorithms. For my experimentation and 

testing, I plan to use DATAVIEW with the new cloud testbeds like Chameleon 

provided by NSF as well as Amazon EC2 cloud. Moreover, I plan to use cloud 

data storages like Dropbox [111], Google Drive [112], Microsoft OneDrive 

[113]. 

Task Placement with Replication for Big Data Workflows in the 

Cloud. We proposed TPS, a task placement strategy for big data workflows.  Big 

data workflows consume and produce huge datasets. Applying task/data 

replication can reduce data movement. So, in future work, I plan to improve TPS 

by applying task/data replication techniques. In addition, we considered task 

placement for executing of an individual workflow. However, in real world, 

multiple workflows can be executed concurrently. Therefore, I plan to extend the 



87 

 

 

TPS strategy in order to achieve task placement for the execution of multiple 

workflows simultaneously. For the other future work, I will enhance the 

performance of both BDAP and TPS strategies by using Cultural Algorithm 

(CA). One of the evolutionary computation systems that simulates the cultural 

evolution is Cultural Algorithm proposed by Dr. Reynolds [114-118]. Due to its 

nature, culture can be seen and understood as a complex adaptive system. In a 

complex system, such as culture, different heterogeneous agents are working 

together and interacting with the environment. This interaction of intelligent 

agents can result in a higher-level behavior used to solve different problems. 

Culture as a source of knowledge can significantly affect the behavior of 

individuals within a population. Cultural Algorithm has two major components: 

the Population Space and the Belief Space [119, 120]. In addition to those two 

components, there is a communication protocol that allows the Belief space, and 

Population space to interact with each other, and exchange the knowledge.
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APPENDIX A: SUPPORT VECTOR 
MACHINE (SVM) P-WORKFLOW 

Workflow Specification 

<workflowSpec> 

<workflow name="svm" root="true"> 

  <workflowInterface> 

    <workflowDescription>simple svm workflow</workflowDescription> 

    <inputPorts> 

            <inputPort> 

              <portID>i1</portID> 

              <portName>a</portName> 

              <portType>File</portType> 

              <portDescription>port i1 description</portDescription> 

            </inputPort> 

            <inputPort> 

              <portID>i2</portID> 

              <portName>b</portName> 

              <portType>File</portType> 

              <portDescription>port i2 description</portDescription> 

            </inputPort> 

    </inputPorts> 

    <outputPorts> 

            <outputPort> 

              <portID>o1</portID> 

              <portName>c</portName> 

              <portType>File</portType> 

              <portDescription>port o1 description</portDescription> 
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            </outputPort> 

    </outputPorts> 

  </workflowInterface> 

  <workflowBody mode="builtin"> 

    <builtin>svm</builtin> 

  </workflowBody> 

</workflow> 

</workflowSpec> 

Workflow Java Source Code 

package datamining; 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

 

import weka.classifiers.Classifier; 

import weka.core.Instance; 

import weka.core.Instances; 

import weka.classifiers.functions.SMO; 

 

public class SVM { 

 public static BufferedReader readDataFile(String filename) { 

  BufferedReader inputReader = null; 

  try { 

   inputReader = new BufferedReader(new 

FileReader(filename)); 
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  } catch (FileNotFoundException ex) { 

   System.err.println("File not found: " + filename); 

  } 

  return inputReader; 

 } 

 

 public static void writeDataFile(String fileName, String content) { 

  try { 

   File file = new File(fileName); 

   // if file doesnt exists, then create it 

   if (!file.exists()) { 

    file.createNewFile(); 

   } 

   // true = append file 

   FileWriter fileWritter = new FileWriter(file, true); 

   BufferedWriter bufferWritter = new 

BufferedWriter(fileWritter); 

   bufferWritter.write(content); 

   bufferWritter.close(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

 } 

 public static void svmImplementor(String trainingData, String testData, 

   String outputData) throws Exception { 

  BufferedReader datafile = readDataFile(trainingData); 

  BufferedReader testfile = readDataFile(testData); 

  Instances data = new Instances(datafile); 

  Instances test = new Instances(testfile); 
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  System.out.println("#read file success..."); 

  data.setClassIndex(data.numAttributes() - 1); 

  test.setClassIndex(test.numAttributes() - 1); 

  Classifier smo = new SMO(); 

  smo.buildClassifier(data); 

  System.out.println("#classifier build success..."); 

  System.out.println(test.numInstances()); 

  for (int i = 0; i < test.numInstances(); i++) { 

   Instance testDataItem = test.instance(i); 

   double testDataItemsClass = 

smo.classifyInstance(testDataItem); 

   System.out.println("#instance classified success..."); 

   String content = "Data item: " + i + ", belong to class " + 

     testDataItemsClass + "\r\n"; 

   System.out.println(content); 

   // Write this to output file... 

   writeDataFile(outputData, content);    

  } 

 } 
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APPENDIX B: RANDOM FOREST P-
WORKFLOW 

Workflow Specification 

<workflowSpec> 

<workflow name="rf" root="true"> 

  <workflowInterface> 

    <workflowDescription>simple rf workflow</workflowDescription> 

    <inputPorts> 

            <inputPort> 

              <portID>i1</portID> 

              <portName>a</portName> 

              <portType>File</portType> 

              <portDescription>port i1 description</portDescription> 

            </inputPort> 

            <inputPort> 

              <portID>i2</portID> 

              <portName>b</portName> 

              <portType>File</portType> 

              <portDescription>port i2 description</portDescription> 

            </inputPort> 

            <inputPort> 

              <portID>i3</portID> 

              <portName>a</portName> 

              <portType>Integer</portType> 

              <portDescription>port i3 description</portDescription> 

            </inputPort> 

    </inputPorts> 
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    <outputPorts> 

            <outputPort> 

              <portID>o1</portID> 

              <portName>c</portName> 

              <portType>File</portType> 

              <portDescription>port o1 description</portDescription> 

            </outputPort> 

    </outputPorts> 

  </workflowInterface> 

  <workflowBody mode="builtin"> 

    <builtin>rf</builtin> 

  </workflowBody> 

</workflow> 

</workflowSpec> 

Workflow Java Source Code 

package datamining; 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.FileWriter; 

import java.io.IOException; 

import weka.classifiers.Classifier; 

import weka.core.Instance; 

import weka.core.Instances; 

import weka.classifiers.functions.SMO; 

import weka.classifiers.trees.RandomForest; 

public class RF { 
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 public static void rfImplementor(String trainingData, String testData, 

   int numoftree, String outputData) throws Exception { 

        BufferedReader datafile = new BufferedReader(new 

FileReader(trainingData)); 

        BufferedReader testfile = new BufferedReader(new FileReader(testData)); 

  Instances data = new Instances(datafile); 

  Instances test = new Instances(testfile); 

  System.out.println("#read file success..."); 

  data.setClassIndex(data.numAttributes() - 1); 

  test.setClassIndex(test.numAttributes() - 1); 

  RandomForest rf = new RandomForest(); 

  rf.setNumTrees(numoftree); 

  rf.setDebug(true); 

  rf.buildClassifier(data); 

  System.out.println("#classifier build success..."); 

  System.out.println(test.numInstances()); 

  String content = ""; 

  File file = new File(outputData); 

  BufferedWriter bw = new BufferedWriter(new FileWriter(file, 

true)); 

  for (int i = 0; i < test.numInstances(); i++) { 

   Instance testDataItem = test.instance(i); 

   double testDataItemsClass = 

rf.classifyInstance(testDataItem); 

   System.out.println("#instance classified success..."); 

   content = "Data item " + i + ", belong to class " + 

testDataItemsClass; 

   System.out.println(content); 

   bw.write(content); 
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   bw.newLine(); 

   bw.flush(); 

  } 

  if (bw != null) { bw.close(); 

  } 

 } 

}
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APPENDIX C: BAYESIAN NETWORK P-
WORKFLOW 

Workflow Specification 

<workflowSpec> 

<workflow name="bayesnet" root="true"> 

  <workflowInterface> 

    <workflowDescription>simple BayesNet workflow</workflowDescription> 

    <inputPorts> 

            <inputPort> 

              <portID>i1</portID> 

              <portName>a</portName> 

              <portType>File</portType> 

              <portDescription>port i1 description</portDescription> 

            </inputPort> 

            <inputPort> 

              <portID>i2</portID> 

              <portName>b</portName> 

              <portType>File</portType> 

              <portDescription>port i2 description</portDescription> 

            </inputPort> 

    </inputPorts> 

    <outputPorts> 

            <outputPort> 

              <portID>o1</portID> 

              <portName>c</portName> 

              <portType>File</portType> 

              <portDescription>port o1 description</portDescription> 
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            </outputPort> 

    </outputPorts> 

  </workflowInterface> 

  <workflowBody mode="builtin"> 

    <builtin>bayesnet</builtin> 

  </workflowBody> 

</workflow> 

</workflowSpec> 

Workflow Java Source Code 

package datamining; 

import java.io.BufferedReader; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileReader; 

import java.io.FileWriter; 

import weka.classifiers.Classifier; 

import weka.core.Instance; 

import weka.core.Instances; 

public class BayesNet { 

 public static void bnImplementor(String trainingData, String testData, 

String outputData) throws Exception { 

        BufferedReader datafile = new BufferedReader(new 

FileReader(trainingData)); 

        BufferedReader testfile = new BufferedReader(new FileReader(testData)); 

  Instances data = new Instances(datafile); 

  Instances test = new Instances(testfile); 

  System.out.println("#read file success..."); 

  data.setClassIndex(data.numAttributes() - 1); 

  test.setClassIndex(test.numAttributes() - 1); 
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  // create a Bayes Network classifier 

  weka.classifiers.bayes.BayesNet bn = new 

weka.classifiers.bayes.BayesNet(); 

  bn.buildClassifier(data); 

 

  System.out.println("#classifier build success..."); 

  System.out.println("number of instances: " + test.numInstances()); 

  String content = ""; 

  // Write this to output file... 

  File file = new File(outputData); 

  BufferedWriter bw = new BufferedWriter(new FileWriter(file, 

true)); 

  System.out.println("#instance classified success..."); 

  for (int i = 0; i < test.numInstances(); i++) { 

   Instance testDataItem = test.instance(i); 

   double testDataItemsClass = ((Classifier) 

bn).classifyInstance(testDataItem); 

   content = "Instance " + i + ", belong to class " + 

testDataItemsClass; 

   System.out.println(content); 

   bw.write(content); 

   bw.newLine(); 

   bw.flush(); 

  } 

  if (bw != null) { 

   bw.close(); 

  } 

 }  
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Data-centric workflows naturally process and analyze a huge volume of 

datasets. In this new era of Big Data there is a growing need to enable data-

centric workflows to perform computations at a scale far exceeding a single 

workstation's capabilities. Therefore, this type of applications can benefit from 

distributed high performance computing (HPC) infrastructures like cluster, grid 

or cloud computing.  

Although data-centric workflows have been applied extensively to 

structure complex scientific data analysis processes, they fail addressing the big 

data challenges as well as leveraging the capability of dynamic resource 

provisioning in the Cloud. The concept of “big data workflows” is proposed by 

our research group as the next generation of data-centric workflow technologies 

to address the limitations of existing workflows technologies in addressing big 

data challenges. 
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Executing big data workflows in the Cloud is a challenging problem as 

workflow tasks and data are required to be partitioned, distributed and assigned 

to the cloud execution sites. In running such big data workflows in the cloud 

distributed across physical locations, the workflow execution time and cost 

efficiency highly depends on the initial placement of tasks and datasets across 

the multiple virtual machines in the Cloud.  

In this dissertation, I propose BDAP strategy (Big Data Placement 

strategy) for data placement and TPS (Task Placement Strategy) for task 

placement, which improve workflow performance by minimizing data 

movement across multiple virtual machines in the Cloud during the workflow 

execution. In addition, I propose a new Big data wOrkflow scheduleR undeR 

deadlIne conStraint (BORRIS) that is used to minimize the execution cost of the 

workflow under a provided deadline constraint in a heterogeneous cloud 

computing environment. In this dissertation, I 1) formalize data and task 

placement problems in workflows, 2) propose a data placement algorithm that 

considers both initial input dataset and intermediate datasets obtained during 

workflow run, 3) propose a workflow scheduling strategy to minimize the 

workflow execution cost once the deadline is provided by user and 4) perform 

extensive experiments in the distributed environment to validate that our 

proposed strategies provide an effective data and task placement solution to 

distribute and place big datasets and tasks into the appropriate cloud virtual 

machines within reasonable time.
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