
Multi-user Searchable Attribute Based Encryption
for Outsourced Big Data

Kyle Astudillo
Computer Science Department

CSU Northridge
Northridge, United States

kyle.astudillo.965@my.csun.edu

Mahdi Ebrahimi
Computer Science Department

CSU Northridge
Northridge, United States

mahdi.ebrahimi@csun.edu

Adam Kaplan
Computer Science Department

CSU Northridge
Northridge, United States

adam.kaplan@csun.edu

Abstract—Petabytes of data are generated every minute, and
this creates a corresponding demand for servers which ingest,
process, store, and maintain this data. The scale of data has
become sufficiently large that normal file access and processing
present different challenges than in prior decades. In the Web
2.0 era, data owners commonly stored and shared data using
on-premise servers. In the past decade, cloud computing has
quickly become the dominant hosting paradigm, as it offers
data owners the benefits of cost-savings, flexible scaling, and
ease of administration. However, cloud computing presents a
myriad of security challenges. Attribute based encryption has
been key to tackling these challenges. We present a method
to allow users to maintain their own secure data on a shared
system, while eliminating the time penalty and single point-
of-failure associated with traditional authorization techniques.
This is implemented as a Representational State Transfer API,
removing the burden of managing auxiliary files or encryption
libraries when uploading documents. This system also supports
data encrypted at rest, removing concerns of administrator access
to unencrypted contents in storage. We leverage key policy
attribute-based encryption (KP-ABE) to store this data, search its
contents, and receive/decrypt this data. We further demonstrate
that KP-ABE can be implemented as part of a distributed or
centralized authorization method. We compare KP-ABE against
AES cryptography, and present system metrics from its execution
on representative data.

Index Terms—Attribute based encryption, cloud storage, REST
API, Key policy attribute based encryption, encryption at rest

Submission Type: Full/Regular Research Paper

Symposium: CSCI-RTBD

I. INTRODUCTION

In the 2010s, cloud-hosting became a popular option upon

which to deploy organizational infrastructure and file stor-

age. When the cloud is combined with consumption-based

billing, service abstraction, and scalability, cloud computing

can offer compelling value to organizations deploying web

services. Sedayao et al highlight major incentives of cloud

hosting, including cost-savings, flexible scaling, and ease of

administration [1]. However, a major barrier blocking enter-

prise adoption of cloud computing is the associated security

concern. Organizations must give careful consideration to the

task of retaining data confidentiality. Sedayao et al bring to

light problems that are inherent in cloud hosting, including the

potential of data which is not encrypted at rest. If data resides

in storage in unencrypted plaintext form, a cloud service

administrator can simply read the data directly from storage.

This problem is compounded when organizations want to share

files with business partners, accounting firms, or law firms. In

these situations, encrypted files leave a trusted system and

have to be transferred or copied into untrusted systems. With

organizations now incentivized to reap the benefits of cloud

pricing, there is an increased need for a suitable security tech-

nique that addresses these issues without negatively impacting

application performance nor other hosting metrics.

Attribute based encryption (ABE) has been identified as an

effective encryption strategy for cloud hosting. ABE encrypts

data at rest, allowing data to hide in plain sight in the event of

an unauthorized storage read-access. When sharing data with

another organization ABE enforces an authorization method

within the decryption key itself allowing file-decryption only

by users with the correct key and attributes satisfying its

policies [2]. OpenABE, an open source implementation of

attribute based encryption, popularly describes an example

Key Policy Attribute Based Encryption (KP-ABE) of email

data, where attributes of this data include the header fields

from, to, and date [8]. In this example, a data owner sharing

multiple encrypted emails can generate a key which only

decrypts emails from or to specific users, sent within a given

date range [8].

In classic cryptography, this scenario introduces a problem

where users possess the encrypted data, but now must decrypt

each file to see which files they have access to. Morales-

Sandoval et al proposed a solution using ABE which encrypts

incoming data by extracting keywords from the original doc-

uments [3]. This allows end users to search encrypted docu-

ments with an encrypted search query. This method is named

Attribute Based Searchable Encryption (ABSE). The system

proposed by Morales-Sandoval et al makes it possible to share

encrypted data with many users, each able to search/access this

data using KP-ABE keys.

In this paper, we present an ABE system providing storage,

sharing and retrieval of encrypted data. This data is encrypted

end-to-end and at rest. We extend prior art by giving data

owners the option of allowing multiple users to store encrypted

data in the system. This provides a many-to-many relationship

between data producers to data consumers. We describe a

Representational State Transfer (RESTful) API to interact with

708

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00212

the system. This eases the uploading and downloading of files,

removing the burden of managing local encryption software

or keys on user systems. This system is thus cross-compatible

with multiple operating systems, as OpenABE is currently

a cross-compatible library. The system provides for users to

maintain the encryption software on their own system so that

they may upload files into the system encrypted with their own

extracted keywords.

The remainder of this paper is organized as follows. In

Section II, we present prior art in ABE cryptography. We de-

scribe our system implementation in Section III. In Section IV

we describe the create, update, read, and delete operations as

implemented in this system, and in Section V we describe our

experimental methodology. We present experimental results in

Section VI, and conclude in Section VII.

II. RELATED WORK

Bethencourt et al provided the first construction of a

ciphertext-policy attribute-based encryption (CP-ABE) [4].

ABE differentiates itself from other encryption techniques by

embedding access control into cipher-text [2]. This ability to

embed access control information into the file itself allows for

the ability of checking permissions on the client side during the

decryption phase, without the need for a centralized identity

and access management system. Any user who has an identity

that contains all of the necessary attributes could decrypt the

document [6]. This provides cost-effective storage and retrieval

of encrypted data in the cloud, while distributing data access

security at scale.

OpenABE provides three types of policies of encryption

public-key (PKE), ciphertext-policy (CP-ABE), and key-policy

(KP-ABE) [8]. CP-ABE and KP-ABE are variants of ABE

which handle policies and attributes differently. CP-ABE

stores policy trees in the ciphertext and attributes with the

users [4], while KP-ABE stores policy trees with the users

and attributes with ciphertext [5]. As an example of CP-ABE

behavior, we consider the case of a user described by name,

job title, age, or rank. In CP-ABE, a stored file could determine

who can gain access to the content by specifying a job title

or a minimum qualifying rank [8]. An example of KP-ABE

behavior is the inverse, wherein attributes describing the file

are used, and the user is granted a policy of their accessible

files by describing a date or content type [8]. The present paper

makes use of KP-ABE, and investigation of CP-ABE is left

for future work.

The KP-ABE process to share data is as follows. In the setup

phase, a master secret key (MSK) and public parameter store

(MPK) are generated [8]. Next, using the MSK and MPK,

a key can be generated. The key will have a policy tree that

describes what kind of content may be accessed, and simply

needs to be given to anyone with whom the data owner wants

to share corresponding data. To encrypt data in a KP-ABE

system an MPK, a random number, attributes, and a content

file are needed to create an encrypted file. To decrypt data in a

KP-ABE system an MPK, a key, and encrypted file are used.

If the policy, attributes, and parameter store align, then the

content will be decrypted. Otherwise the decryption process

will not succeed.

Morales-Sandoval et al extended these ABE processes so

that a data owner could not only encrypt files but store them

in the cloud though a cloud service provider (CSP) [3]. The

CSP indexes files by extracting keywords with which a data

consumer could search over file contents. This process is called

key-policy attribute based searchable encryption (KP-ABSE),

and is elaborated in Fig. 1.

Fig. 1 shows the process with which a data owner would

extract words from plaintext data to create a secure index,

which can then be used by an encrypted document search

node. Those same documents are encrypted into ciphertext

and placed into a database hosted by a CSP. This provides

data consumers with the ability to create an encrypted query to

search through documents, allowing them to then retrieve spe-

cific plaintext documents to which they have access (through

their attribute set).

We contribute to this body of work by providing a many-to-

many relationship between data producers and data consumers.

We further demonstrate that KP-ABE can be implemented

as part of a distributed or centralized authorization method.

We compare KP-ABE against advanced encryption standard

(AES) cryptography [9]. We present system metrics from its

execution on representative data.

III. SYSTEM MODEL

We implement our system as the following set of functions,

hosted on a web server as a RESTful API.

Word Set Extraction: from an input plaintext file, words

are extracted so that search queries can be made against the

words. This function includes storing the file within the private

database. As an option this process can be bypassed if the

request provides alternate keywords in the JSON payload,

which can be used instead of those extracted by the function.

Secure Index ID (SIID) Creation: a public webserver

requests a SIID from a private webserver for a plaintext file

to be saved within the system.

Secure Index ID To File: the webserver sends an SIID to

the public database to receive an s3-cipher-text-key.

Event Return Code URL: provides a response with infor-

mation such as a status-code, message, stdout, stderr and an

optional text data within the content payload. With this, data

consumers may poll for results on an alternate URL if the

present query takes too long to compile the requested file list.

Document Encryption: the webserver makes a call to

key-operations wrapper with information such as organization

and the key with which to encrypt. This function returns a

ciphertext file. The encryption process can be bypassed by

users whose files are already encrypted by setting the kpabe-

encrypted parameter to true.

Upload Document: the plaintext file is uploaded to the

private object store (an AWS S3 Bucket) and the ciphertext

file is uploaded to the public object store (also an AWS S3

Bucket).

709

Fig. 1. Morales-Sandoval’s System Model for Document Sharing and Retrieval in the Cloud [3].

Update Event: the webserver updates all of the databases

with the response status. This function stores the object store

keys in the private database and the s3-cipher-text-key, status-

code, and message in the public database.

Delete Document: given an SIID, will remove the SIID

from the system which means users will no longer be able to

obtain corresponding files though the webserver.

Encrypted Document: the webserver will query the private

database for a list of SIIDs that match a given search query.

Get Document: the webserver retrieves a document from

object store to return to the user.

Document Decryption: given a set of attributes, and a

decryption key, a corresponding plaintext file will be returned.

IV. DATA OPERATIONS

The Create operation, shown in Fig. 2, is one of the most

resource-intensive operations in the system. Create takes a

content file from a data producer and stores the file on the

cloud so that data consumers may access the file. The process

involves a client making a request to the web server with a file

with content, a mpk file to use for encryption, and a config

file in JSON with parameters such as organization and policy

name. On the webserver once the request is received the word

set extraction process begins, in which the file is stored for

search queries. Next the webserver makes a request to the

CSP database for a secure index identifier. Then a response

is returned to the user with a response-id that they can query

to see the status of their upload. A separate internal request

is made to the key operations server to encrypt the content

file which will return an encrypted ciphertext file back to the

webserver. With the ciphertext file the webserver can now start

the upload process which then stores the plaintext file into an

AWS S3 bucket which returns a s3-plain-text-key and stores

the encrypted file into an S3 bucket which returns a s3-cipher-

text-key. With both files saved an update event takes place

which stores s3-plain-text-key, s3-cipher-text-key, ssid, msk,

mpk, status-code. The user has the option to poll the status of

Fig. 2. Create Sequence Diagram

their previous request. The status-code ”complete” indicates

that the data has been uploaded successfully.

Read operations are one of the more time-consuming op-

eration within the system. Data consumers have access to

this operation, which consists of taking a search query and

returning a list of files for the client to download. The ”Read”

operation is more of a search engine while the ”Read Id” is a

more traditional file-read. The read request is sent from a data

consumer client to the webserver with a search query as an

attribute in a JSON payload. The webserver then performs an

encrypted document search which will return a list of SIIDs

for the client to use inside a ”Read ID” request.

The ”Read Id” operation, shown in Fig. 3, starts by sending

a request to the webserver with an SSID as a parameter

alongside an mpk file. The webserver then queries the CSP

database to obtain the s3-cipher-text-key. The webserver then

uses the s3-cipher-text-key to access the ciphertext file from

710

Fig. 3. Read ID Sequence Diagram

an AWS S3 bucket. The returned ciphertext file is sent to

key operations, which decrypts the file and returns a plaintext

file which can be returned to the client.

The Update operation is the most complex of the operations.

Data producers are authorized to modify existing files within

the system. Data producers begin with a request much like

the Create operation such that they need a content file, mpk

file, and config file with settings such as organization, policy

name, SSID, and optional keywords. The webserver uses this

to perform a word set extraction on the content file. An SIID

is then generated and a status code URL is returned as a

response to the data producer. The data producer may poll

the URL to see the status of the update operation in progress.

The webserver then takes the content file and sends it to

key operations with the mpk file to encrypt the document.

Next key operations returns an encrypted ciphertext file to

the web server. Then the web server begins the upload process

where the plaintext and ciphertext files are uploaded to their

respective S3 buckets. Next an update event is triggered to

update the database with the new SIID and s3-cipher-text-key,

s3-public-text-key, ssid, msk, mpk, status-code. After this is

complete, the status code URL will indicate ”success.”

All create, update, read, delete operations have similar error-

handling. If any operation fails before the Event URL is sent,

an HTTP error will be returned directly to the user. However

if the Event URL has already been sent to the user, the error

message will be saved into the response table. Any subsequent

request to the Event URL will provide an error message

detailing the specific failure.

V. METHODOLOGY

OpenABE was deployed on a virtual machine run-

ning CentOS-8-Vagrant-9.3.2011-20201204.2.x8664, 1 In-

tel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 16MB of RAM,

16 GB of SSD Memory. This virtual machine was used to run

all the experiments natively without any network connections

to reduce any variation between test executions. Each test was

executed for 1000 iterations to obtain a reasonable sample

size for the experiments. All commands were measured with

the UNIX time command. The following are the experiments:

abe-base-enc, abe-base-dec, aes-base-enc, aes-base-dec, abe-

bin-enc, abe-bin-dec, abe-lorem-enc, abe-lorem-dec. All tests

have a very similar execution structure: generate a file, KP-

ABE encrypt, KP-ABE decrypt, validate output file against

generated file. Execution time of each step is measured.

The first set of tests, abe-base-enc and -dec, exercises

ABE encryption of a fully-utilized text file containing random

characters from the start of the file to end of the file. These

characters fully utilize all 16 MB with no spaces. The second

set of tests, abe-bin-enc and abe-bin-dec, measures the KP-

ABE encryption of 16 MB binary files. The third set of tests,

abe-lorem-enc and -dec, exercises KP-ABE encryption of a

fully- utilized text file with random words from the start of the

file to end utilizing all 16 MB and allowing space characters.

The fourth set of tests, aes-base-enc and -dec, measures AES

encryption of a fully-utilized text file with random characters

from the start of the file to end, fully utilizing all 16 MB with

no spaces.

The next set of tests introduces network API calls. These

tests no longer take place on a closed virtual machine without

network connection. These tests instead use the previously

mentioned centos-8 virtual machine, SQL Server version

8.0.31-0, ubuntu 0.20.04.1 for linux on x86-64, and an Ubuntu

virtual machine with 1 Intel(R) Core(TM) i7-8700 CPU @

3.20GHz, 4 GB of RAM, and 32 GB of SSD Memory. These

add some variability to the performance results. However, each

time a call outside of the system was made, a measurement

was taken before and after. Thus, in the data, each network

call will be shown as part of the total time. These tests also

no longer use the time command line utility and instead use

the python time module to measure elapsed time. These tests

were also executed 1000 times to obtain a reasonable sample

size.

The fifth set of tests measures how the overall system

uploads data and returns data back to users. The test labeled

webserver-read measures the execution time of the read opera-

tion and the processes behind them such as the download from

the public S3 bucket, the decryption process, and the rest of

the processes such as getting an s3-cipher-text-key from SIID.

These results are grouped together under AVGProcessTime.

VI. RESULTS

Results from the first four sets of experiments can be seen

in Table I. There is some variation between the three file types

being encrypted, with the fastest being the encryption of binary

text files. The next best file type in terms of speed was the

abe-lorem-enc. One of the main contributions to why abe-bin-

enc is not up to par with the other two tests is that there

was no spaces between the 16 MB of characters, leaving little

opportunity for processing at word boundaries. Similarly, for

decryption abe-bin-dec files execute fastest, followed by abe-

lorem-dec, then abe-base-dec. Encryption is faster by a factor

of 17.7, when the mean from or abe-lorem-enc is compared to

that of abe-lorem-dec. The decryption process for KP-ABE is

a lengthy process with much variability. For example, the best

711

Test USR(s) SYS(s) Mem(KB)
abe-base-enc.Mean 0.13 0.08 127113.32
abe-base-enc.Median 0.13 0.08 127084.00
abe-base-enc.Mode 0.10 0.08 127232.00
abe-base-enc.Max 0.30 0.15 127292.00
abe-base-enc.Min 0.09 0.05 126944.00
abe-base-dec.Mean 2.05 0.07 103424.99
abe-base-dec.Median 2.06 0.08 103460.00
abe-base-dec.Mode 1.90 0.08 103208.00
abe-base-dec.Max 3.56 0.18 103728.00
abe-base-dec.Min 1.88 0.04 103120.00
abe-bin-enc.Mean 0.10 0.06 127083.26
abe-bin-enc.Median 0.10 0.06 127060.00
abe-bin-enc.Mode 0.10 0.06 127020.00
abe-bin-enc.Max 0.16 0.11 127292.00
abe-bin-enc.Min 0.08 0.04 124264.00
abe-bin-dec.Mean 1.91 0.06 103405.66
abe-bin-dec.Median 1.90 0.06 103440.00
abe-bin-dec.Mode 1.90 0.06 103476.00
abe-bin-dec.Max 2.17 0.10 103724.00
abe-bin-dce.Min 1.88 0.04 103052.00
abe-lorem-enc.Mean 0.11 0.07 127110.56
abe-lorem-enc.Median 0.11 0.07 127064.00
abe-lorem-enc.Mode 0.11 0.06 127036.00
abe-lorem-enc.Max 0.22 0.13 127292.00
abe-lorem-enc.Min 0.09 0.05 126940.00
abe-lorem-dec.Mean 1.95 0.06 103422.17
abe-lorem-dec.Median 1.92 0.06 103460.00
abe-lorem-dec.Mode 1.90 0.06 103208.00
abe-lorem-dec.Max 2.53 0.11 103728.00
abe-lorem-dec.Min 1.88 0.04 103116.00
aes-base-enc.MEAN 0.03 0.01 4916
aes-base-enc.MEDIAN 0.03 0.01 4920
aes-base-enc.MODE 0.03 0.01 4976
aes-base-enc.MAX 0.04 0.02 8176
aes-base-enc.MIN 0 0 4760
aes-base-dec.MEAN 0.06 0.02 0.01
aes-base-dec.MEDIAN 0.05 0.02 0.01
aes-base-dec.MODE 0.05 0.02 0.01
aes-base-dec.MAX 0.15 0.03 0.03
aes-base-dec.MIN 0 0 0

TABLE I
DATA SUMMARY FOR ABE-TESTS

case decryption (Min) for abe-lorem-dec is 1.88 user seconds

while the worst case (Max) is 2.53 user seconds.

The fourth experiment uses OpenSSL AES [9], a long-

popular symmetric encryption algorithm, to compare against

OpenABE KP-ABE. The results are 0.03 seconds as an

average for encryption and 0.05 seconds for decryption. We

compare this result against the average abe-base-enc of 0.13

seconds and average abe-base-dec of 2.05 seconds. This results

in AES being 4.3 times faster for encryption and 41 times

faster for decryption. The difference between memory usage

between these algorithms demonstrates that AES encryption

is 25 times more memory-efficient and AES decryption is

10K times more efficient. It should be noted that AES is a

symmetric encryption algorithm while ABE is attribute-based

encryption, and thus has additional layers built into it. ABE

even makes use of AES within its key encapsulation mecha-

nism [7]. As aforementioned, the tradeoff of ABE’s memory

usage and execution-time is the ability to distribute the user

authorization process, thus removing system bottlenecks and

single point of failure associated with a classic AES based

implementation.

Total Time Process Time S3 Download
MEAN 8.10002 4.47837 0.16
MEDIAN 8.295 4.685 0.15
MODE 7.75 4.11 0.14
MAX 15.11 11.53 2.13
MIN 3.88 0.36 0.10

TABLE II
DATA SUMMARY FOR WEBSERVER-READ

Fig. 4. Read request count graph

Fig. 5. Read process time graph

The fifth experiment, summarized in Table II, demonstrates

how the system at large performs when saving files into the

system, and also when retrieving files. Reading a file from

the system can take at least 3.88 seconds and at most 15.11

seconds with 15 MB files. The creation of a file takes longer

than a read with 17 seconds for a single 15 MB file upload,

however the create operation time within the request is much

faster at 0.80 seconds, indicating that the majority (95%) of

the create time is spent uploading files to S3 buckets. We

find that 80% of create requests complete between 14 and 17

seconds. As Fig. 4 shows, read requests closely approximate

a bell curve distribution shifted to the left, with a median

time of 8.30 seconds, a minimum time of 3.88 seconds, and

a maximum time of 15.11 seconds. The overall execution of

the read request takes 8.10 seconds on average but the process

time takes 4.47 seconds, comprising 55% of the request’s total

time. The read decryption time takes 1.95 seconds, which

comprises 24% of the overall request total time. The S3

download portion of the read request is only 1% of the total

712

read operation, using only 0.16 seconds on average with a

minimum of 0.10 seconds and a maximum of 2.13 seconds.

The distribution of execution time within the read process is

shown in Fig. 5. This demonstrates that across read request

times, the S3 download portion and the decryption time remain

roughly constant, whereas longer-executing reads have longer

AvgProcessTime.

VII. CONCLUSION

The work described herein maintains secure data at scale

while eliminating the time penalty and single point of failure of

authorizing users for data access. We implement a distributed

security approach using KP-ABE. We leverage the properties

of ABE to authorize data users by their attributes, which must

satisfy the user policy tree embedded within the decryption

key. We extend the system theorized by Morales-Sandoval et

al [3] to allow multiple data processing clients to search en-

crypted data using extracted keywords. The execution burden

of authorization is distributed onto each of the clients instead

of centralized at the server. We find that the S3 upload of a

file dominates (95%) the execution of file creation, but that the

S3 download operation comprises only 2% of file reads. We

also find that classic AES is 4.3 times faster than KP-ABE for

encryption and 41 times faster for decryption. However, ABE

provides for more flexible reading and searching of encrypted

data at scale, and can eliminate the single point of failure

experienced by traditional file encryption systems.
In future work we intend to address key-revocation, which

is not currently implemented in this system. This will allow

a user whose key has been compromised or whose privileges

have been revoked to lose access to data associated with their

key. We propose to extend OpenABE to include a use-limit

attribute that increments on every decryption. Once the use-

limit is reached, a user will need to request a new key from

the system, which limits the extent of their authorization. We

will implement and measure authentication methods to identify

users that have lost their permissions, and deny them service.

REFERENCES

[1] J. Sedayao, S. Su, X. Ma, M. Jiang, K. Miao, ”A Simple Technique for
Securing Data at Rest Stored in a Computing Cloud,” IEEE International
Conference on Cloud Computing, pp. 553-558, 2009.

[2] M. Green, B. Waters, S. H. Waters, J. Akinyele, The OpenABE Design
Document, Zeutro LLC, 2018.

[3] M. Morales-Sandoval, M. H. Cabello, H. M. Marin-Castro, J. L. G.
Compean, ”Attribute-Based Encryption Approach for Storage, Sharing
and Retrieval of Encrypted Data in the Cloud,” IEEE Access, 8, 170101-
170116, 2020.

[4] J. Bethencourt, A. Sahai, B. Waters, ”Ciphertext-policy attribute-based
encryption,” Proceedings of the 2007 IEEE Symposium on Security and
Privacy, pp. 321-324, 2007.

[5] V. Goyal, O. Pandey, A. Sahai, B. Waters, ”Attribute-based encryption
for fine-grained access control of encrypted data,” Proceedings of the
13th ACM Conference on Computer and Communications Security, pp.
89-98, 2006.

[6] A. Sahai and B. Waters, ”Fuzzy identity-based encryption,” in Annual
International Conference On The Theory And Applications Of Crypto-
graphic Techniques, pp. 457-473, 2005.

[7] J. Akinyele, libopenabe-v1.0.0-api-doc, Zeutro LLC, 2022.
[8] J. Akinyele, libopenabe-v1.0.0-cli-doc, Zeutro LLC, 2022.
[9] J. Daemen and V. Rijmen, ”AES Proposal: Rijndael,” 1999.

713

