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ABSTRACT 
The makespan of a big data workflow is the time elapsed between the start of the first task and the 

completion of the last task in the workflow. This time includes the delivery of the final data product to the 

desired location within the network. Due to the large number of inputs and intermediate outputs of a big data 

workflow activity, the makespan of the workflow is significantly influenced by how its tasks and datasets are 

allocated in a distributed computing environment. Therefore, reducing makespans of big data workflows can 

be achieved by incorporating a data and task allocation strategy into an execution planning phase performed 

by a workflow management system. This creates a pressing need for an investigation of such strategies. To 

address this need, this paper provides a formal definition of the makespan minimization problem for big data 

workflows and proposes efficient workflow execution planning strategies. In particular, two algorithms, 

WEP-A and WEP-B, following different strategies are proposed. WEP-A follows a phased approach to the 

generation of an execution plan whereas WEP-B uses an evolutionary algorithm-based optimization strategy 

to find a valid plan with the shortest makespan. Both of these strategies are evaluated through extensive 

simulation experiments by varying workflow graphs and resources in the workflow environment. The results 

of the experiments demonstrate that WEP-B performs better than WEP-A on a set of benchmark examples. 

For more complex and large workflows, the improvements due to evolutionary optimization in WEP-B are 

likely to be even more pronounced. 
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_________________________________________________________________________________________________________________ 

1. INTRODUCTION

Complex scientific computations are often 

modeled as workflows. Among other benefits, 

decomposing a complex application into a workflow 

simplifies the design effort, enables the reuse of 

computational modules, and allows their parallel 

and/or pipelined execution. The concept of workflow 

applications is used widely in scientific research in 

variety of domains such as bioinformatics, physics, 

astronomy, ecology and earthquake science (Lu and 

Zhang, 2009, Lim et al., 2010, Juve and Deelman, 

2010).  Given the computing, storage and networking 

technologies, coupled with the increased capacity to 

perform collaborative scientific research, there is an 

increased need to produce efficient scientific 

workflows. 

 A data-centric workflow management system 

(DWFMS) is a platform designed to support two key 

functions: 1) the design and specification of 

workflows using a visual drag and drop interface; and 

2) the configuration, execution and monitoring of

workflow runs. Examples of representative DWFMS

systems include Taverna (Hull et al., 2006), Kepler

(Ludäscher et al., 2005), VisTrails (Freire, et al.,

2006), Pegasus (Deelman et al., 2005), Swift (Zhao et
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al., 2007), and DATAVIEW (Kashlev and Lu, 2014, 

Chebotko et al., 2007). Traditionally, these systems 

use a directed acyclic graph (DAG) abstraction to 

model a workflow, where each vertex of the graph 

represents a workflow task, and each directed edge 

between two vertices depicts the dataflow between 

them.  

In order to support the demands of big data 

workflows, the design interface and DAG abstraction 

must be expanded to explicitly model both data-

centric and computational activities. The execution 

module must also be modified in order to include 

execution planning and preparation functions to 

decide, allocate and move data sets and tasks to their 

respective hosts in the target distributed computing 

environment. The determination of an efficient 

execution plan is a non-trivial exercise when the 

workflow involves big data sets and hundreds or 

thousands of complex tasks (Bharathi et. al., 2008, 

Deelman and Chervenak, 2008).  

This paper contributes toward the enhancement 

of existing DWFMSs in the area of execution 

planning of big data workflows. Workflow execution 

planning is directed by the strategy adopted for the 

allocation of data and workflow tasks. The strategies 

proposed here seek to minimize the total execution 

time (a.k.a. makespan) of the workflow. Makespan is 

defined as the time that elapsed between the start of 

the first task and the completion of the last task in the 

workflow, including the delivery of final data 

products to a desired place. A big data workflow 

involves big datasets, either as inputs or intermediate 

outputs. Therefore, the makespan can vary greatly 

depending on how the tasks and datasets are allocated 

in the distributed computing environment. The 

utilization of a data and task allocation strategy that 

minimizes the makespan in a big data workflow 

management system can deliver significant benefits 

to users in getting their results in time.  

The remainder of the paper is organized as 

follows.  Section 2 describes the characteristics, and 

assumptions of the workflow execution environment 

needed to support such a model. An extended 

graphical model of big data workflows and the 

concept of execution plans are presented in section 3. 

In Section 4, a formal definition of the makespan 

minimization problem of big data workflows is 

provided.  And two efficient algorithms are proposed 

to solve it. In Section 5, the proposed algorithms   are 

compared with a random allocation strategy using 

and extensive series of simulation runs. A brief 

overview of related work appears in Section 6. The 

paper concludes in Section 7 with a summary of the 

key contributions of the paper. 

2. BIG DATA WORKFLOW EXECUTION

ENVIRONMENT
An execution environment for a big data 

workflow is comprised of geographically distributed 

autonomous sites spread around the globe. In this 

paper, these sites are defined as ‘hosting’ sites, or 

simply as ‘hosts’. The hosts may be heterogeneous in 

various ways, but all have the capability to provide 

data hosting service and/or compute (task execution) 

services.  

Hosts can be classified into three basic types:  a 

data host; a task host; and a hybrid host. A “data host” 

provides only data hosting services. It will act on data 

storage and data transfer requests, but cannot be used 

to perform arbitrary workflow tasks. A “task host” 

can be used to run workflow tasks, but cannot be 

used for (durable) data hosting. It is able to provide 

enough temporary scratch storage for all input and 

output data sets that relate to the execution of 

allocated tasks. A “hybrid host” is capable of 

providing data hosting services as well as compute 

services. 

 For a collection of ‘hosts’ to serve as an 

execution environment for a particular big data 

workflow, there must be a communication capability 

to stream big data sets from each host to all  other 

hosts in the collection. Furthermore, there must be an 

agreement that allows such streaming to take place at 

a predicted level of service and time. In addition ‘task 

hosts’ must be available to run workflow tasks on 

demand, as dictated by the workflow management 

system.  

The notion of ‘host’ is a generic abstraction for 

packaging storage and computing capacity and does 

not imply a specific underlying architecture or 

business model. Notable examples of ‘hosts’ include 
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public clouds, private clouds, HPC data centers, and 

Grid nodes. Here it is assumed that the internal 

architectures of the ‘host’ implementations will 

provide data and computing services with predictable 

SLA’s in terms of data transfer rates and processing 

speeds.  

The first step in the production of a mathematical 

formulation of the makespan minimization problem 

is to characterize the properties of a “host”.  The 

three basic properties of a “host” in the model are  

 Available Storage Capacity – This attribute is

relevant to hosts of type ‘data’ or ‘hybrid’. The

‘Available Storage Capacity’ refers to the

capacity available for the execution of a

particular workflow and does not reflect the total

storage capacity of the host in question. The

available storage capacity may be less than the

total capacity as a result of a sharing policy or

another service agreement.  An elastic storage

service provided by the host may allow available

storage capacity to be changed. However, it is

assumed in the model that such changes occur

prior to and outside the execution planning of a

particular workflow run. Thus, for the purpose of

this formulation, available storage capacity of a

‘host’ is fixed and is specified using the same

units, such as megabytes for each host.

 Available Data Transfer Bandwidth – This

attribute allows the prediction of the time

required to transfer a dataset from one ‘host’ to

another. The available data transfer bandwidth

may be limited by the connectivity of the host,

and/or by a service level agreement.

 Available Compute Capacity – This attribute is

applicable to hosts of  type ‘task’ or ‘hybrid’ and

allows the prediction of the processing time of a

workflow task as well as  the number of

workflow tasks that can be executed in parallel

on the host without impacting individual task

execution times. As with storage capacity,

compute capacity can be constrained by policy or

service level agreements.

Note that the above three attributes are not fixed 

or static for a host at all times. These are considered 

to be established priori prior negotiations and remain 

unchanged during the execution planning and 

subsequent execution of an individual workflow.  

For workflow execution planning purposes, it is 

assumed that all of the hosts in the workflow 

environment are fully reliable and available. The 

responsibility of ensuring these characteristics lies 

with individual hosts and is covered by their SLA’s. 

The impact of the recovery and high-availability 

mechanisms is reflected in the expected processing 

times of tasks and expected data transfer rates 

associated with the host.  

3. FORMULATION OF WORKFLOW

EXECUTION PLANNING
 To formalize the workflow execution planning 

problem, formal descriptions of the following are 

needed: 

 Big Data Workflow Execution Environment

 Big Data Workflows

 Big Data Workflow Execution Plan

Table 1 summarizes all the symbols and notations 
used in the following definitions. 

Definition 1: (Big Data Workflow Execution 

Environment) - A big data workflow execution 

environment  is defined as a 6-tuple    {H, 

TYPE, ASC, ACC, DTR, CR}; where for all hH, 

ASC(h) = 0 if TYPE(h) = ‘task’ and ACC(h) = 0 if 

TYPE(h) = ‘data’.  In terms of the big data execution 

environment defined above, big data workflow 

represented as a directed acyclic multipartite graph as 

given below.  

Definition 2: (Big Data Workflow) – A big data 

workflow, W, is represented as a directed acyclic 

graph as a 3-tuple, Ⱳ(V, E, SIZE), where the set of 

nodes, V, satisfy the following properties: 

 There are two special nodes called entry and exit

nodes of type ‘task’.

 For each dataset referenced in the workflow there

is a unique node ‘x’ in V where NODETYPE(x)

=’data’ and vice versa. 
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Table 1:  Notations Summary 

 Notation Description 

 Workflow Execution Environment 

H Set of hosts in . 

M Total number of hosts in H. 

hk kth host in H; 1 ≤ k  ≤  m. 

TYPE A function mapping hosts to unique types; 

TYPE: H  (‘data’, ‘task’, ‘hybrid’).     

ASC A function mapping hosts to their 
available storage capacities.     

ASC: H  I, where I is the set of non-

negative integers.     

ACC A function mapping hosts to their 

available compute capacities.     

ACC: H  I, where I is the set of non-
negative integers.     

DTR A function mapping a pair of hosts to data 

transfer rates between them.     

DTR: H  H R, where R is the set of 
non-negative real numbers.     

CR Compute Rate Function giving compute 

rate for each host     

CR: H  R, where R is the set of non-

negative real numbers.     

Ⱳ Scientific Workflow Graph 

V Set of nodes in Ⱳ. 

NODETYPE A function mapping nodes to node types as 
“Data’ or ‘Task’.     

NODETYPE: V  {‘Data’, ‘Task’} 

Ᵽ An ordered partitioning of V into disjoint 
sets called partitions where nodes in a 

partition are of identical type. 

|Ᵽ| Number of partitions in Ᵽ. 

Pi ith partition in Ᵽ. 

E Set of directed edges in Ⱳ.  

exy Directed edge from node ‘x’ to node ‘y’ in 

V. 

SIZE A function mapping nodes to numbers.  

SIZE: V  I, where I is the set of non-
negative integers. 

pred(x) pred(x): {y| y  V, where there exists an 

edge eyx  V}. 

Ω A workflow execution plan for a given 
workflow graph Ⱳ and the workflow 

execution environment . 

 Mapping of nodes in Ⱳ to hosts H in . 

 A scheduling function that computes the 
scheduled start time, the scheduled 

completion time, and  thescheduled release 

time for each node  in  Ⱳ.     

: V  {Scheduled Start Time, Scheduled 

Completion Time, Scheduled Release 

Time } 

startx() Scheduled start time for node ‘x’ generated 

by the scheduling function . 

finishx() Scheduled completion time for node ‘x’ 

generated by the scheduling function . 

releasex() Scheduled release time for node ‘x’ 

generated by the scheduling function . 

requires A function that computes the  maximum 
storage required for any host ‘h’ of type 

‘data’ or ‘hybrid’ at the same time during 

the execution plan ω.     

requireS:  H  ω Number of Storage Units 

require A function that computes the maximum 

number of  tasks assigned to any host ‘h’ 

of type ‘task’ or ‘Hybrid’ at the same time  

during the execution plan ω.     

requireC:  H  ω Number of Compute 

Tasks to be executed in parallel  

restrictedHosts List of hosts where a node ‘x’ is restricted 

for mapping by policy.     

restrictedHosts: V  {set of  hosts} 

transfer(x, y) Data transfer time between nodes ‘x’ and 

‘y’ which varies depending upon the 

mapping of nodes to hosts. 

 For each task in the workflow there is a unique

node ‘n’ in V where NODETYPE(n) =’task’ and

vice versa. 

The set of edges, E, satisfy the following properties: 

 There is no edge exyE where x = y, i.e., there is no

edge or self-loop from a node to itself.

 There is no edge exyE, such that if ‘y’ is the entry

node, there is no incoming edge to the entry node.

 There is no edge exyE, such that if ‘x’ is the exit

node, there is no outgoing edge from the exit node.

 There is no edge exyE where NODETYPE(x) =

NODETYPE(y). That is, there is no edge between

nodes of identical type.

 For each node y in V, there is exactly one edge

exyE if NODETYPE(y) = ‘data’. That is, there is 

exactly one incoming edge to a datanode. 

 For each node y in V, where ‘y’ represents a pre-

existing dataset (input to the workflow), there is

exactly one edge exyE where ‘x’ is the entry node.

The SIZE function satisfies the following properties: 

 SIZE(x) = 0, if ‘x’ is the entry or exit node.

 For any ‘x’V, if NODETYPE(x) = ’data’, then

SIZE(x) represents the size of the corresponding

dataset in units of data storage /transfer.

 For any ‘x’V, if NODETYPE(x) = ’task’, then

SIZE(x) represents the compute cycles required for

the execution of the corresponding task.

 A dataset node corresponds to a unique dataset in 

the workflow and represents the data-centric activity 

for the transfer of the dataset from one host to 

another. The dataset is treated as an atomic unit for 

the purpose of storage and data transfer. A task node 

corresponds to a compute-intensive activity in the 

workflow. A workflow activity that is both data and 

compute centric can be modeled by a task node 

preceded and succeeded by data node. Therefore in 
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model, the terms dataset (task) and dataset (task) 

node interchangeably. 

 We include an edge from the entry task node to 

each of the input dataset nodes, as if these were all 

produced as outputs of the entry task. The entry task 

is a pseudo task with a zero processing time and is 

introduced to model the start of the workflow. 

Likewise, an exit task node also represents a pseudo 

task with zero processing time that models workflow 

termination.  

3.1 MULTIPARTITE NATURE OF THE

WORKFLOW  
 A big data workflow Ⱳ as described in the 

preceding section has a multipartite structure 

revealed by the partitioning Ᵽ as follows: 

 Ᵽ  {Pi}; 1 ≤ i ≤m; where m is the total number of

ordered partitions and Pi denotes the ith partition.

 For each pair of partitions Pi and Pj in Ᵽ, Pi∩Pj = ,

i.e., the partitions are disjoint.

 Each node in V belongs to exactly one partition in

Ᵽ.

 For any pair of nodes ‘x’ and ‘y’ in any partition Pi;

1 ≤ i ≤ m, NODETYPE(x) = NODETYPE(y), i.e., all

nodes in a partition are of the same type and there is

no edge between nodes in the same partition.

The partitions are indexed in order as follows: 

 The first partition P1 contains the entry node only.

 The last partition Pm contains the exit node only.

 There is no edge in E from a node in Pj to a node in

Pi; 1 ≤ i < j ≤ m.

 For each node ‘x’ in any partition Pi; 1< i ≤ m,

there is at least one edge from a node in partition Pi-1.

This condition implies that each node is placed in the

lowest possible numbered partition.

  The definition order of partitions in Ᵽ implies the 

following properties: 

Property 1: The number of partitions, |Ᵽ|, is a finite 

odd number. 

Property 2: Even numbered partitions contain only 

dataset nodes and odd numbered partitions contain 

only task nodes. 

Property 3: There are no edges from a node in an 

even (odd) numbered partition to nodes in an even 

(odd) numbered partition. 

Property 4: For each node in all even numbered 

partitions (a partition comprising of dataset nodes), 

there is exactly one incoming edge and one or more 

outgoing edges. 

Property 5: For each node in all odd numbered 

partitions, there is at least one incoming edge (except 

the first partition) and at least one outgoing edge 

(except the last partition). The first partition has no 

incoming edge and the last partition has no outgoing 

edge. 

Property 6: For any pair of nodes ‘x’ and ‘y’ in V, if 

ypred(x) and ‘x’Pi and ‘y’Pj, then j < i. 

Definition 3: (Usage Scope of a Dataset). The 

Usage Scope of a dataset node ‘x’ is defined by an 

ordered pair of indices (i, j); 1< i <j ≤m where ‘x’ Pi 

and j is the highest index such that there is an edge 

from ‘x’ to a node in Pj.  

 Understanding the usage scope of a dataset allows 

the release of storage occupied by it at the earliest 

possible time. If an intermediate dataset produced 

during a workflow run must be kept in storage for 

future runs or other workflows, the situation is 

represented by including an edge from the dataset 

node to the exit node.  

3.2 PARALLEL EXECUTION OF TASKS IN THE

WORKFLOW 
 To minimize the completion time of a workflow, 

one must execute workflow tasks in parallel as much 

as possible. Based upon the model of workflow 

presented so far, it is clear that the tasks belonging to 

the same partition can be executed in parallel 

provided that there is sufficient available compute 

capacity. The following equation gives the maximum 

possible degree of parallelism in a workflow: 

Maximum Possible Parallelism = max |Pi| (1 < i < m; 

i is odd); where |Pi| is the number of nodes in 

partition Pi. 
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The actual parallelism may be restricted by 

available compute capacity or by design to minimize 

the delays due to dataset transfers. Thus, there is a 

tradeoff between exploiting parallelism and 

minimizing dataset transfers. Furthermore, these 

tradeoffs must follow the resource constraints of the 

workflow execution environment. Figure 1 shows a 

workflow graph.  

3.3 WORKFLOW EXECUTION PLAN

A workflow execution plan lays out the mapping 

of hosts to nodes in the workflow graph and the 

relative timings when a task/data transfer is 

scheduled to start and complete, and when the 

resources occupied by a node can be released. The 

relative timings in the plan depend on the processing 

and data transfer times which in turn depend on the 

mapping of hosts to nodes in the workflow graph. 

Definition 4: (Big data Workflow Execution 

Plan). A big data workflow execution plan is 

formally defined as a tuple ω  (, ), where 

  is a mapping function such that for each node ‘x’

in V, (x) = ‘h’ where ‘h’H. 

  is a mapping function such that for each node ‘x’

in V, (x) = {startx, finishx, releasex}. All times are 

relative to the start time of entry node.  (entry node) 

= {0, 0, 0}. 

To calculate the makespan of an execution plan in 

partition-based approach we need to obtain maximum 

storage (requestS) and compute requirements 

(requestC) of a host at any point within an execution 

plan. Function 1 computes requestS and request of a 

host in any step of an execution plan.  

Function 1. Computing requestS and requestC for a 

host 
Input: 

 ω :        Execution Plan ω, host ‘h’H, 

     hH:    host 

Output: 
 maximum storage and compute requirements of host  h,  

requestS(h) and requestC(h) 

1. BEGIN 

2. nodes = storageCounts = computeCounts = {};   // set 

of counts 

3. counted = {};    // set of node 

4. countS = countC = 0;

5. For each node ′𝑥′ ∈ H 

6. If (x) = ‘h’ then 

7.  nodes ← ‘h’;   // add ‘h’ to nodes 

8. End If 

9. End For 

10. For each node ‘x’  node 

11. If (‘x’  counted) then 

12. counted ← ′𝑥′; 

13. countS = SIZE(‘x’);

14. countC = 1; 

15.  For each node ‘y’  nodes and ‘y’ ≠’x’

16. If  ((‘y’  counted) And (( startx ≤  starty ≤ 

releasex) Or ( starty ≤  startx ≤ releasey))) 

17.  countS = countS + SIZE(‘y’);

18.  countC = countC + 1;

19.  counted ← ′𝑦′; 

20. End If 

21.  End For 

22. storageCounts ← countS; 

23.  computeCounts ← countC; 

24. End if 

25. End For 

26. requestS = max{storageCounts};  //maximum of 

all storage counts 

27. requestC = max{computeCounts};  //maximum of 

all compute counts 

28. return requestS(h), requestC(h); 

29. END 

Figure 1: A data-centric workflow with five tasks, five input 

datasets, four intermediate datasets, and one output set. 
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 An execution plan must be valid in order to be 

realized in a workflow. For an execution plan to be 

valid, it must satisfy the following constraints: 

 Hosting Restrictions

 Host Type Constraints

 Storage Capacity Constraints

 Compute Capacity Constraints

 Precedence Constraints

These constraints are formally defined below. 

 Constraint 1: (Hosting Restrictions) – The 

execution plan ω satisfies the restricted mapping 

constraint if and only if for each node ‘x’ in V, if (x) 

= ‘h’ then ‘h’  restrictedHosts(x). A mapping policy 

may restrict a node to be mapped to certain hosts or 

the host for a given node is predetermined and fixed. 

For example, certain dataset in raw forms may not be 

allowed to cross national boundaries during the 

makespan process.  

Constraint 2: (Host Type Constraints) – The 

execution plan ω satisfies the host type constraint if 

and only if for each node ‘x’ in V, (x) = ‘h’, then 

either NODETYPE(x) = ‘data’ and TYPE(h) ≠ ‘task’ 

or NODETYPE(x) =  ‘task’ and TYPE(h) ≠ ‘data’.  

Constraint 3: (Storage Capacity Constraints) – 

The execution plan ω satisfies the storage capacity 

constraint if and only if requestS(h) < ASC(h) for 

each host ‘h’ in H in the plan ω. Function 1 shows the 

procedureemployed to compute requestS(h). 

Constraint 4: (Compute Capacity Constraints) – 

The execution plan ω satisfies the compute capacity 

constraint if and only if requestC(h) < ACC(h) for 

each host ‘h’ in H in the plan ω. Function 1 shows the 

procedure to compute requestC(h). 

Constraint 5: (Precedence Constraints) – The 

execution plan ω satisfies the precedence constraint if 

and only if for each pair of nodes ‘x’ and ‘y’, if there 

is an edge from ‘x’ to ‘y’ in E then starty > finishx + 

transfer(x, y), and releasex > finishy where transfer(x, 

y) = (SIZE(x) + SIZE(y))  DTR((x), (y)).

3.4. WORKFLOW EXECUTION PLANNING

PROBLEM 

Definition 5: (Makespan of an Execution Plan) - 

Given an execution plan ω, the makespan of ω, 

makespan(ω), is the total execution time of the 

workflow. 

Definition 6: (Makespan Minimization Problem) – 

Given a workflow graph Ⱳ and the workflow 

execution environment , a makespan minimization 

problem is formally defined as the problem of finding 

a workflow execution plan  ω optimal such that  i) 

ωoptimal is a valid execution plan, and ii) for all valid 

execution plans ω, makespan(ωoptimal) ≤ makespan(ω). 

4. SOLUTIONS FOR WORKFLOW

EXECUTION PLANNING
    In this section two main solutions for finding 

heuristic solutions to the workflow execution 

problem formulated in section 3.4 are described. 

These solutions follow completely different 

approaches which are subsequently compared and 

evaluated by experiments. First approach is based on 

construction of execution plan one at a time in the 

ascending order. Algorithm 1, also called WEP-A, 

describes the solution based on the first approach. 

Second approach, called WEP-B is described in 

Algorithm 2 and is based on a meta-heuristic 

optimization technique. 

4.1 ALGORITHM 1: WEP-A 
    The WEP-A algorithm works on the input 

workflow laid out as a finite set of partitions. 

Workflow task nodes belong to odd numbered 

partitions and dataset nodes to even numbered 

partitions. Figure 2 represents partitioned layout of 

the workflow shown in Figure 1. irst WEP-A 

algorithm computes, for each partition, the set of 

preferred, permissible and other hosts for each 

workflow node host (lines 6-12). A valid mapping 

of workflow nodes to the available hosts is then 

computed next (lines 13-18). Following that, start 

and finish times of each workflow nodes in the 

plan are calculated (lines 19-26). The unused 

datasets are released in order to increase the 

storage capacity of the hosts (lines 27-31). Finally, 

the algorithm calculates the makespan of the 

execution plan and returns both an execution plan 

and its makespan as outputs (lines 35-43).   
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P# Workflow Mapping 

Function 

P1 𝚽 (tentry) = ’client’ 

P2 𝚽(d1),𝚽(d3) = h1     

𝚽(d2) = h3 𝚽(d4) = 
h2 

P3 𝚽 (t1) = h4 

P4 𝚽(d6) = h3 

P5 ----- 

P6 ------ 

P7 ------ 

P8 ----- 

P9 ----- 

P10 𝚽(d10) = h5 

P11 𝚽(texit) = ‘client’ 

Figure 2: Workflow of Figure 1 shown as Ordered 

Partitions. 

Algorithm 1.  WEP –A : Incremental Generation of Execution 

Plan by Partitions 

Input: 

   W(Ᵽ, E, SIZE):   Workflow graph where Ᵽ = {Pi}; 1 ≤ i ≤m,  

   (H, TYPE, ASC, ACC, DTR, CR): Workflow Execution 

environment     

Output: 

  Execution Plan ω, Makespan(ω) 

1. BEGIN 

2. finishentry node  = startentry node = releaseentry node = 0; 

3. (x) = ‘client’ if x is tentry or texit , otherwise (x) = ; 

4. i = 2;  // P1 = tentry and Pm = texit 

5. For each Pi (1<i < m) do 

6. sorted_node_list =  nodes in Pi sorted by descending 

order of SIZE;

7. While  sorted_node_list ≠  do

8. x = remove next node in sorted_node_list;

9. If  (x) ≠  then break; // this will be true for nodes 

with pre-existing fixed     allocation

10.  permissible_hosts = {h: h  H And h

restrictedHosts(x) And 

     (if NODETYPE(x) == ‘Data’ then (TYPE(h) ≠ ‘Task’ 
And  SIZE(x) ≤ ASC(h)) else  

  TYPE(h)  ≠ ‘Data’  And  SIZE(x) ≤ ACC(h)}; 

11. preferred _hosts = permissible_hosts ∩{(y): y 

pred(x)}; 

12. other_hosts=permissible_hosts - preferred _hosts; 

// find a valid mapping

13 If preferred _hosts ≠  then

14. If (NODETYPE(x) ==’Data’) 

15.  (x)=argmin
ℎ

DTR((𝑦), ℎ )for all hpreferred _hosts 

16. Else 

17.  (x)= argmin
ℎ

CR(ℎ) for all hpreferred _hosts 

18. End if 

19. End if 

// compute the scheduled start and finish timings in the plan

20. If (NODETYPE(x) == ‘Data’) then 

21. startx = finishy: y = pred(x); 

22. finishx = startx + (SIZE(x)  DTR((y),(x) )); 

23. ASC((x))  = ASC((x)) - SIZE(x); 

24. Else   //x is a task node 

25. startx = max (finishy + SIZE(y)  DTR((y), (x) )) : 

ypred(x); 

26. finishx = startx + (SIZE(x)  CR((x) ); 

27. releasex = finishx; 

// release predecessor dataset resources, if possible 

28. For each  y pred(x) 

29. If there exists node ‘z’ such that ypred(z)  And 

(x) =  then 

30. releasey = finishx ; 

31. ASC((y)) = ASC((y)) - SIZE(y);

32.  End If 

33.  End for 

34. End while 

35. End While 

// compute makespan – include datasets that need to be 
transferred back to client

36. For each y pred(exit node)

37. If releasey == null   then   //must be a data set

38. releasey = finishy + (SIZE(y)  

DTR((y),‘client’));

//transferring to the client node may not be needed 

for all nodes. 

d1 d2

t1 

d3 d4

d6

t5 

t4 

t3 t2 

d8d7

d5

d9 

d10 

tentry

texit 
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39. End if 

40. End For 

41. finishexitnode;= max (releasey): y pred(exit node); 

42. makespan(ω) = finishexitnode 

43. return ω and makespan(ω) 

44. END 

  4.2 Algorithm 2: WEP-B 

Algorithm 2.  WEP-B:  Execution Planning  by Evolutionary 

Optimization  

Input: 

 W:    Workflow Graph; 

     (H, TYPE, ASC, ACC, DTR, CR): Workflow Execution 

environment, 

  population_size:             size of population, 
  elitism_rate:       rate of elitism, 

  mutation_rate:   rate of mutation, 

  num_iterations:   number of iterations 

Output: 

Execution Plan ω and its makespan 

1. BEGIN 

num_elite ← population_size × elitism_rate; 

num_crossover ← (population_size – num_elite)/2;

num_mutation ← population_size × mutation_rate; 

Populatio← { }; Populationnew← { }; Populationtemp← { }; 

/* Step 1: Initialize population */ 

2. For i = 1 to population_size do 

3. Generate  a  new random  mapping, , which 
produces a

 valid execution plan , ω  (, );  

4.  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ←  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  {<
ω, 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(ω) >} ;

5. End For 

6. For i=1 to num_iterations do 

/* Step2: Carry over num_elite best execution plans to next 

generation */ 

7. Populationnew ←  add top num_elite execution plans from

Population in the ascending order of makespan; 

/* Step 3:  Generate num_crossover new execution plans 

by crossover */

8.  For j=1 to num_crossover do 

9. Select randomly a pair of execution plans say ω  A 

and ω B from Population; 

10. Generate valid execution plans ω  C and ω  D by an 
appropriate one-point crossover of 

  mapping functions in  ω A and ω B ; 
11. Populationtemp←Populationtemp  {< ωC , Makespan 

(ω C)>, < ω D , Makespan (ω D)>}; 

12.  End for 

    /* Step 3:  Mutate num_mutation execution plans after 

crossover*/   

13.  For j=1 to num_mutation do 

14. select a new execution plan, ω  A,  randomly from
Populationtemp ; 

15. mutate the mapping function in ω A to generate a new 

execution plan, ω B ; 

16.  Replace < ω A , Makespan (ω A)> in Populationtemp

by < ω B , Makespan (ω B)>

17. End for 

18. Populatin← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑤 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡𝑒𝑚𝑝; 

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑛𝑒𝑤 ← { }; 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡𝑒𝑚𝑝 ← { }; 

19. End for 

20. return the execution plan ω in Population with the

shortest makespan;

21. END

  Algorithm WEP-B proceeds by generating an initial 

population of valid execution plans. The size of the 

population population_size is an input parameter to 

the algorithm. Execution plans along with their 

makespans are retained for the next step. The 

algorithm is then iterated a number of times as 

described by another input parameter num_iterations. 

Alternatively, the algorithm can be terminated by 

checking a convergence criterion (for example, 

percentage change in average makespan) at the end of 

each iteration. In each iteration, three tasks are 

performed. First, a fixed number of execution plans 

with the shortest makespans are selected to be carried 

over to the next generation. Then we randomly cross-

over pairs of execution plans to generate new valid 

plans. Finally, we modify plans from the previous 

step by controlled mutations that result in valid plans 

only. The new population is then formed by the union 

of carried over plans and genetically modified plan. 

In the end the execution plan with the shortest 

makespan is returned. 
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5. EXPERIMENTS
The two proposed workflow execution planning

strategies have been simulated in a cloud computing 

environment on Wayne State University’s high 

performance Grid network.  The simulation used 

eight grid nodes and compared the two algorithms by 

simulating five synthetic workflow applications 

based on five real data-centric workflows: Montage, 

CyberShake, Epigenomics, LIGO and SIPHT 

(Bharathi et al., 2008). These workflow applications 

are represented in Figure 3 and were developed 

through the Pegasus workflow management system 

for different research domains like bioinformatics 

and astronomy.     For these experiments each of the 

selected workflows was run 200 times with different 

parameters as shown in Table 2. They were also 

compared with a random solution generator WEP-R. 

In addition, we evaluated the performance of WEP-B 

performance with 20% of fixed-location datasets. 

   Figure 4 shows the workflow makespans produced 

by varying the number of hosts and fixing the number 

of workflow nodes. The size of the workflow 

makespans are increased by increasing the number of 

workflow nodes in all three strategies. As expected, 

the WEP-A and WEP-B strategies generate execution 

plans with shorter makespans on average than the 

WEP-R strategy. Furthermore, the gap increases as 

the number of hosts increases. This is because a 

random strategy may spread out the workflow and 

thereby introduce dataset transfer delays. Algorithm 

WEP-B seems to perform better than WEP-A. This 

can be explained by the simpler structure of 

workflows. As the complexity and size of workflow 

graph increases, it is expected that WEP-B is likely to 

perform substantially better than WEP-A. It can also 

be noticed that, WEP-A and WEP-B’s performances 

flatten out where the excess availability of additional 

hosts no longer impacts the makespans anymore. 

   Figure 5 shows similar results of experiments in 

which the number of hosts are fixed whereas the 

number of nodes in the workflow graph can vary.  

   In a third  set of experiments (shown in Figure 6), 

the locations of the varying  percentages of the 

datasets are fixed, By fixing the locations of datasets, 

workflow makespans show an increase for the WEP-

A and WEP-B algorithms whereas there is almost no 

change for the WEP-R strategy. This behavior is 

attributed to the fact that by fixing the locations of 

datasets, there is less freedom to reduce the 

makespans by reallocating datasets. 

6. RELATED WORK
Cultural Algorithms (CA) is a branch of

evolutionary computation inspired from social 

evolution. It is composed of a knowledge component 

called belief space as well as 

the population component. CA have been 

successfully applied to various single or multi-

objective optimization problems (Reynolds 1999, 

Jayyousi and Reynolds 2014). 

   Previous research work in the context of distributed 

computing environments has been mainly focused on 

the performance modeling and 

CyberShake LIGO 

Montage     SIPHT 
Epigenomics 

 Figure 3: The structure of five realistic data-centric 

workflows [Bharathi et al., 2008] 

Table 2. Description of dataset and hosts of our experiment. 

Overall workflow nodes and hosts 

# of nodes     
(datasets and tasks)  

[50,200,750,3000] 

Dataset size  [1TB – 100TB] 

Task computation  [10Hz – 103Hz] 

# of hosts     

(datasets and tasks) 

[5,10,25,50,100] 

Data transmission rate [0.1MBps – 3.0MBps] 

Data host storage capacity [200TB – 1PB] 

Task host computation 

rate 

[103Hz – 106Hz] 

https://en.wikipedia.org/wiki/Population
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Figure 4. Workflow makespans by varying the number of data/ task hosts. 

Figure 5. Workflow makespans by varying the number of workflow nodes (data/task). 
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 A optimization of job scheduling and task allocation. 

Due to the emergence of e-science and big data 

workflows, it has become important to consider the 

costs of dataset allocation and movement while 

developing an execution plan for a big data workflow. 

This is even more crucial when a big data workflow 

is executed in a distributed environment that involves 

multiple and heterogeneous data centers. Kosar et al., 

(2005a, 2005b) proposed an allocation framework for 

distributed computing systems which considered the 

data placement subsystem as an independent module 

along with the computation subsystem. In their 

proposed model, both data placement and task 

computation jobs can be queued, scheduled, 

monitored, managed and even check pointed. 

Kayyoor et al., (2013) modelled the data placement 

and replication strategies for the distributed 

environments. They stated that minimizing query 

latencies is not a critical issue in many analytical 

workload scenarios. So they tried to minimize the 

average number of computational nodes deployed for 

the workflow by grouping the most interdependent 

data together based on their occurrences of their 

common query accesses. Chervenak et al., (2007) 

explored the advantages of separating data placement 

services from workflow management systems. By 

applying an autonomous data placement service 

along with a data replication service, they 

demonstrated the benefits of pre-staging data when 

compared to the data stage in and out strategies of the 

Pegasus workflow management system. Lin and Lu 

(2011) proposed an algorithm for mapping a data-

centric workflow application into a cloud execution 

environment where resources can be dynamically 

acquired using the elastic services of the cloud. 

  In Çatalyürek et al., (2011) workflows were 

modeled as hypergraphs and a hypergraph 

partitioning technique, k-way partitioning, was 

proposed to minimize the cut size. In that way, they 

were able to cluster the workflow tasks along with 

their required data in the same execution site. Yuan et 

al., (2010) applied a heuristic binary clustering 

algorithm to pre-cluster datasets and greedily 

assigned workflow tasks to an execution site which 

contained the most input datasets for that workflow. 

Although their approach placed the most 

interdependent data sets together and can reduce data 

movement, it did not work as well with clusters 

of different sizes and different densities. The other 

related work is Er-Dun et al., (2012) where they 

Figure 6. Workflow makespans by varying the percentages of fixed-location datasets for fixed-size of workflows with 

1000 nodes and 50 hosts. 



International Journal of Big Data (ISSN 2326-442X)  Vol. 2, No. 2, 2015         40 

applied Genetic Algorithm to heuristically produce 

their data allocation solution along with incorporating 

load balancing as part of optimization criterion. Their 

model reduced data movement but workflow task 

allocation was not considered.  

  This paper extends the BDAP work   of Ebrahimi et 

al., (2015) through the incorporation of the following 

new to the model:  

1. The workflow makespan minimization

problem was formulated in terms of a big

data environment and workflow. This was

not addressed in the BDAP paper.

2. Two new allocation strategies, WEP-A and

WEP-B, were added to the extended BDAP

model. While BDAP focused on 

minimizing data movement during 

workflow execution, WEP-A and WEP-B 

focused on the minimization of the 

workflow makespans. 

3. A series of extensive experiments were

employed to study the performance of

WEP-A and WEP-B in comparison to

WEP-R (a random solution) using five real-

world workflows.

7. CONCLUSIONS
In a workflow that involves big datasets, either as

inputs or intermediate outputs, its makespan can vary 

greatly depending on how the tasks and datasets are 

allocated in a distributed computing environment. 

This paper provided a formal definition of the 

makespan minimization problem for big data 

workflows, and proposed two efficient workflow 

execution planning strategies. In particular, two 

algorithms WEP-A and WEP-B were proposed. Each 

followed a different allocation strategy. WEP-A 

followed a phased approach to generate an execution 

plan whereas WEP-B used an evolutionary 

optimization strategy to find a valid plan with the 

shortest makespan. Both of these strategies were 

evaluated and compared through extensive simulation 

experiments by varying workflow graphs and 

resources in the workflow environment. Our 

experiments demonstrated that WEP-B performed 

better than WEP-A although WEP-B was simpler and 

faster than WEP-B. In more complex and larger 

scaled workflows, the improvements due to 

evolutionary optimization in WEP-B were likely to be 

become even more pronounced.  
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