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Abstract— The performance of executing big data workflows in 
the Cloud highly depends on the placement of the workflow 
original datasets. An optimal data placement reduces the data 
movement among virtual machines, and as a result, it 
significantly reduces the workflow makespan. Data placement is 
an NP-hard problem; therefore in this paper, we propose CDAP 
(Cultural algorithm Data Placement), a novel metaheuristic 
data placement strategy based on Cultural Algorithms (CA) to 
improve the performance of a workflow by minimizing the data 
movement among the virtual machines during workflow 
executions. The effectiveness of CDAP is demonstrated through 
extensive experiments where we evaluated our proposed method
against a set of well-known data placement strategies.

Keywords—Big Data, Big Data Workflows, Data Placement,
Cloud Computing, Cultural Algorithms

Full/Regular Research Paper (CSCI-RTBD)

I. INTRODUCTION

The advances in computing and data storage technologies 
brings the opportunity to scientists to perform more
collaborative research. Workflows are generally used to 
model complex scientific computations that bring an 
opportunity to scientists to effectively and efficiently 
collaborate by sharing and reusing their workflows and,
therefore, reproduce their experimental results. Big data 
workflows naturally include hundreds and thousands of linked 
computation tasks to process a large number of scientific 
datasets. It is feasible to execute big data workflows over 
distributed, and heterogeneous computing environments such 
as cloud [7, 10].

A big data workflow management system is a platform to 
design and execute complex workflows and traditionally is 
modeled by a directed acyclic graph (DAG) where each graph 
node represents a workflow computation task, and the directed 
edges between two task nodes represent dataflow between 
tasks.

In this paper, we propose CDAP, an evolutionary 
algorithm (EA) that is based on Cultural Algorithms (CA) [9]
to optimally apply the data placement for big data workflow 
executions in the Cloud. As big data workflows are data-
centric applications and process huge datasets, therefore, our
main goal is to minimize the total data movement between
cloud virtual machines during the workflow executions. A
sample workflow with five tasks (t1 – t5), and five datasets (d1
– d5) is shown in Figure 1.a.  Figure 1.b shows an instance of 
the tasks and datasets placement for the sample workflow in 
the cloud with three virtual machines (VM1 – VM3).

Here, VM1 hosted tasks t1 and t2 as well as datasets, d1 and
d3. Similarly, VM2 hosted two tasks t3 and t4 along with two 
datasets, d2 and d4. Additionally, both task t5 and dataset d5 are
placed in VM3. Once we execute this workflow, dataset d2 is 
required to move from VM2 to VM1 to complete the process 
of task t2. However, there is no need to move any other 
datasets from other virtual machines into VM1 to run task t1
because all its input datasets, d1, and d3 are already placed in 
VM1.

In this paper we propose a CA-based data placement 
algorithm named CDAP to minimize the total data movement 
between cloud virtual machines during workflow executions.
CDAP randomly generates a list of data placement solutions.
Then within some iterations, CDAP computes and compares 
the generated data placement solutions by applying a pre-
defined fitness score and at the end, it returns the best data
placement solution. The best data placement solution is the 

Figure 1. a) a workflow with five tasks {t , t , … , t } and five datasets {d , d , … , d }. {d , d } are the input datasets for task t , { d , d , d } are input 
datasets for task t , and so on. b). a cloud virtual machine setting with three
virtual machines. Datasets {d , d } as well as tasks {t , t } are placed in VM1.
Datasets {d , d }, and tasks {t , t } are placed in VM2. Similarly, dataset {d }
as well as task {t } are placed in VM3.  
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one that minimizes the total data movement between cloud 
virtual machines during workflow executions. 

In this paper, we only focus on the data placement 
problem, and the workflow scheduling problem is out of the 
scope of this work. Any workflow scheduling algorithm can 
utilize CDAP to improve the workflow throughput. To 
evaluate CDAP and compare it with the most competitive data 
placement algorithms, we execute workflow tasks 
sequentially using topological sort. We explain our proposed 
strategy for data placement in section III in detail.

The remainder of this paper is organized as follows: in 
section II, we define and formalize our system model. Section 
III explains our data placement strategy, CDAP, in detail. 
Then in section IV, the experimental results are shown and 
discussed. Section V presents the related work. Finally, the 
conclusion and future work are presented in section VI.

II. FORMALIZING WORKFLOW DATA PLACEMENT PROBLEM

Big data workflows are executed in the Cloud. Therefore, 
we model the cloud computing environment first. We 
consider M distributed virtual machines in the Cloud as the 
execution sites to execute workflow tasks. Cloud Computing 
Providers (CCP) typically have their own data-balancing 
strategy to store data and assign computation tasks to proper 
virtual machines; they do not consider the structure of the 
workflows.

To execute big data workflows in the Cloud, we need to 
model the Cloud. A cloud computing environment is modeled 
as follows:

Definition 2.1 (Cloud Computing Environment C). A
Cloud computing environment C is a 3-tuple =( , , ), where: is a set of virtual machines in the cloud C.  

denotes the mth virtual machine in C.

VMS: VM → R+ is the virtual machine storage capacity
function. VMS(VMm) returns the maximum available 
storage capacity of the virtual machine in the 
cloud C. It is measured in some pre-determined units
such as Gigabyte (GB) or Terabyte (TB). R+ is the set 
of all real positive numbers.: × → is the data transfer rate 
function. ( , ) returns the network 
bandwidth between two virtual machines  and . It is measured in some pre-
determined unit, such as Megabyte (MB) per second. 
R+ is the set of all real positive numbers.

In this paper we assume that all the cloud virtual machines 
are used for both computation and storage purposes. Big data 
workflows contain a set of computation tasks that consume 
one or more datasets and may produce intermediate datasets 
as their outputs. Those output datasets will be sent to other 
tasks as their inputs by following the data flow logic,
represented as edges in workflow graphs. A big data workflow 
is formalized as follows:

Definition 2.2 (Big Data Workflow W). A big data
workflow W can be modeled formally as a 4-tuple including
two sets and two functions as follows:

= ( , , , )
is the set of workflow computation tasks. Each 

individual task is denoted by .

D is the set of input datasets for workflow W. Each 
individual dataset is denoted by .: → is the dataset size function. ( )
returns the size of the dataset . The size of a dataset
is defined in some pre-determined units such GB.: →  is the task-dataset function. DS( ),  ∈

returns the set of datasets that are consumed by as
its inputs.

Definition 2.3 (Data Movement Cost DMC). To access and 
transfer the dataset from virtual machine to ,
we calculate the data movement cost (DMC) by:

( , , ) =  0,                                         =( )( , ) ,     ≠
Data placement scheme is defined to represent the place of 

each workflow dataset in a virtual machine and is defined 
formally as follows:

Definition 2.4 (Data Placement Scheme P). Suppose there 
are M virtual machines and I datasets, a data placement
scheme is represented by a I-element vector such that ( ) indicates the index of the virtual machine which is 
placed into. For example, the data placement scheme of the
example workflow in Figure 1.a is P = (1, 2, 1, 2, 3), and it 
means that the datasets and are placed into the virtual 
machine ( ( ) =  ( ) = ), the datasets and 

are placed into the virtual machine ( ( ) = ( ) = ) and the dataset d is placed to the virtual 
machine ( ( ) = ).

After data placement, CDAP assigns workflow tasks to the 
most appropriate virtual machine. Assign( ) function is used 
to indicate the virtual machine that is assigned to. For 
example in Figure 1.a, ( ) =  ( ) = ,( ) =  ( ) = ,and ( ) =

.

To evaluate and compare CDAP with other competitive, 
existing algorithms, we define the fitness score as the total size 
of data movement during workflow executions. For this 
purpose, we execute all the K number of workflow tasks, and 
for each task execution, we summate the entire input datasets 
movement cost using DMC definition (Definition 2.3). The 
fitness score is defined as follows:

Definition 2.5 (Fitness Score FScore). Given a workflow W
with K number of tasks executing in the cloud C with utilizing 
the data placement P, fitness score is equal to the total data 
movement for executing all tasks of the workflow W, in the 
cloud C. FScore is defines as follows:

( , , ) = , ( ), ( )∈ ( )∈
For the data placement problem addressed in this paper, each 
virtual machine has limited storage capacity and can store 
multiple datasets subject to its storage capacity constraint.
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The goal is to place the workflow datasets into the cloud 
virtual machines such that the FScore gets minimized. 
Therefore, we define the data placement minimization
problem as follows:

Definition 2.6 (Data Placement Minimization ). Given 
a workflow W, a cloud computing environment C, and data 
placement schema P, the data placement problem is 
formalized to search for the optimal data placement schema, 
Popt as: =  ( , , )

In the next section, we present CDAP approach to search 
for the optimal data placement solution, Popt in the space of 
all possible data placement solutions.

III. PROPOSED DATA PLACEMENT ALGORITHM

CDAP is an Evolutionary Algorithms (EA) based on the 
sCultural Algorithms (CA) that simulates cultural evolution
[9].

CA is a dual-inheritance system that has two main 
components: The Population Space and the Belief Space. The 
Belief Space is an additional component that provides a 
mechanism to store and transfer knowledge from one
generation to another generation. Moreover, both Population 
and Belief Spaces can communicate with each other to 
exchange their knowledge using acceptance and influence 
protocols. (Figure 2).

Any traditional heuristic algorithms like Genetic 
Algorithm (GA) can be employed in the Population Space. 
To explore the search space and generate the optimal 
solution, genetic operators such as selection, mutation, and 
crossover can be applied. 

The Belief Space component can include various 
knowledge sources. Three primary sources utilized in CDAP 
are as follows:

1) Domain knowledge that tracks changes in the fitness 
scores to generate diversity and mutation values. 2) 
Situational Knowledge that comprises the best solutions 
(Elites) from the population, and 3) Normative knowledge 
that contains the upper and lower bounds for various numeric 
attributes like virtual machine or dataset indices.

After producing each generation, an acceptance function 
is applied to select the elite solutions to update the knowledge 
sources in the Belief Space. The Belief Space can influence 
the Population Space by guiding the changes in the data 
placement solutions for the next generation [9]. Population 
and Belief Spaces are updated after each generation based on 
feedback from each other. These processes repeat until 
reaching pre-specified termination conditions.

The main steps of the CDAP algorithm are shown in 
Figure 3. Algorithm 1 presents the pseudo-code for the CDAP 
algorithm. CDAP has three main inputs: Workflow W, cloud 
virtual machines specifications VM, and CDAP 
configurations Config. In the first step, CDAP randomly 
creates the initial population (the data placement solutions) 
and initializes the Belief Space (lines 1-3). Then, it evaluates
the performance of each individual solution using the fitness
score (line 4). In the next step, CDAP selects the best 
individuals (elites) to update the Belief Space (lines 6-7).

Figure 3. Flowchart of CDAP 
Algorithm 1: CDAP

Input: Workflow W, Virtual machines specifications VM, CDAP   
configurations 

Output: The optimal data placement solution Popt

1. t ← 0
2. Initialize Population POP(t);
3. Initialize Belief Space BLF(t);
4. Evaluate Population FScore(POP(t), Obj());
5. Repeat
6.    Accept(POP(t));
7.    Update(BLF(t), Accept(POP(t)));
8.      POP(t+1) ← Influence(POP(t), BLF(t));
9.      Variation(POP(t+1));
10. t ← t+1;
11. Until termination condition achieved
12. Return the best data placement solution, Popt

Figure 2: Cultural Algorithms
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Then, CDAP influences the current population based on the 
knowledge in the Belief Space by moving them towards areas 
of highest fitness, and generates a new population evolved 
from the old population (lines 8-9). Next, CDAP returns the 
best solution if the stop criteria are reached (line 12), 
otherwise it will repeat lines 6-10.

IV. EXPERIMENTAL RESULTS

The experimental results are presented and discussed in
this section. We compare CDAP with the most competitive 
data placement approaches, PSO, GA and Random 
algorithms.

A. Performance Evaluation
To evaluate the performance of CDAP, we adopted four

synthetic workflow applications based on real scientific 
workflows: Montage (astronomy), CyberShake (earthquake 
science),Epigenomics (biogenetics), and LIGO (gravitational 
physics domain) [3]. Figure 4 shows the structure of these 
workflows. We compare different sizes of these workflow 
applications and assume each of the workflow task can be run
on every cloud virtual machine.

We demonstrate the performance of CDAP and other 
approaches regarding the average of the total data movement 
cost in terms of hour. In our experiments, we assume that all 
the virtual machine types are the same and the data movement
rates (network bandwidth) between all virtual machines are 
the same. Table 1 shows the value of the parameters used in 
our experiments.

B. Results And Analysis
Figure 5 shows the data movement cost (DMC), in terms 

of hour by varying the size of workflows. We use five virtual 
machines. CDAP reduces DMC and outperforms the other 
algorithms. In addition, by increasing the size of the 
workflows, DMC is increased in all algorithms. However, 
CDAP has a better performance compared to the other 
algorithm in more complex, large workflows.

In Figure 6, we compare CDAP with the other algorithms 
by increasing the number of cloud virtual machines. We use 
three, five, ten, and fifteen virtual machines for each workflow 
of size 100. We assume all the virtual machines are the same 
type. DMC is increased by increasing the number of virtual 
machines in all four strategies as there are more options 
(virtual machine) for the data placement algorithms to place 
the datasets. Again, CDAP outperforms the other strategies
and reduces DMC more than the other algorithms. There is a 
higher performance improvement using CDAP in a larger
number of virtual machines.

The experimental results prove that CDAP effectively 
decreases workflow communication costs more than PSO, 
GA, and Random approaches.

V. RELATED WORK

Both data placement and workflow task assignment have 
become fundamental research topics in the Cloud due to the 
rapid increase of accessible large datasets over the Internet 
and the emerging field of big data [9]. Current research 
studies for cloud computing environments have been mainly 
focused on the optimization of task scheduling and data
placement. In [11], the authors considered data placement
with data replicas for distributed environments. They grouped 
the most similar data together based on their occurrences in 

common query accesses to minimize the average number of 
dedicated computation nodes. In [6], an Ant-Colony data 
placement algorithm is proposed such that each ant places
datasets in the proper data center based on the heuristic and 
pheromone information. By applying task placement and data 
replication services, paper [5] evaluated and displayed the
benefits of pre-staging data compared to the Pegasus data 
stage processing. A Genetic Algorithm for data placement 
was proposed in [8]. This paper considered a load-balancing 
factor to reduce data movement, but the workflow structure 
was not considered. The particle swarm optimization (PSO) 
was utilized for data placement in [2, 4]. In addition, in paper 
[1], the authors proposed a data placement algorithm by 
combining both GA and PSO algorithms.

In our previous works, we proposed big data placement
strategy (BDAP) [12] and task placement (TPS) [14] in order 
to place the most interdependent datasets and tasks in the 
same cloud virtual machine. BDAP minimized the total 
amount of data movement between virtual machines during 
workflows executions. TPS is about task assignment and can 
be applied independently or conjectured with BDAP to place 
data and workflow takes together. All these works, including 
BDAP and TPS are either GA or PSO-based approaches, and 
our main contribution in this paper is to improve the 
performance of the data placement algorithm by employing 
CA.

VI. CONCLUSIONS AND FUTURE WORK 

We propose CDAP, a data placement strategy for Cloud-
based scientific workflow by utilizing Cultural Algorithms.
CDAP minimizes the total amount of data movement between 
virtual machines during executions of the workflows in the 
Cloud. In this work, we employed the Cultural Algorithm 
(CA) to select and place the most proper dataset in the same

TABLE 1: DEFAULT SETTINGS USED IN THE EXPERIMENTS.

Size of Population
Maximum generation
Crossover probability
Mutation probability
Maximum iteration
Number of Elites

100 - 300
100

0.85 - 0.95
0.10 - 0.20

20
0.15 * Pop

Figure 4: Scientific workflows used in the experiments [3].
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virtual machine during workflow executions. Our extensive 
experiments and comparisons have shown that CDAP
outperforms other proposed algorithms in minimizing data 
movement.

For future work, we plan to consider both data and task 
replica to improve CDAP. In addition, we plan to extend 
CDAP to achieve data placement for the execution of various
workflows simultaneously.
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