Introduction to NoSQL

Lecture Plan

Introductions

What is NoSQL?

Relational vs. NoSQL databases
Aggregate data model
Map-Reduce and Hadoop

Relational databases: strengths

* Persistence: large amounts of data can be safely and
securely kept on storage device(s)

— ability to get small bits of information quickly and easily
* Concurrency: many applications may look at the same
body of data at once, possibly modifying that data:

— RDBs handle concurrency by controlling the access to their
data through transactions

— if an error occurs during the processing of changes,
transactions can be rolled back
* Integration: several applications need to communicate
and collaborate to solve a complex task:

— concurrency control automatically handles multiple
applications

Relational databases: weaknesses

Impedance mismatch: difference between the
relational model and in-memory data structures

— RDBs organize data into structure of relations and
tuples (tables and rows)

— values in a relational tuple have to be simple (i.e. no
structures, such as nested records or lists)

— in-memory data structures can be more complex than
simple relations

— as a result, in-memory data structures need to be
translated into a relational representation in order to
be stored on disk

Relational data model

line items:

0321293533 | 2

0321601912 | 1

il

0131495054 | 1

$61

$51

orders

order lines

customers

- payment details:

Card: Amex
CC Number: 12345
expiry: 04/2001

credit cards

Relational databases: major weakness

 RDBs are designed to be run on a single machine

* Sharding: RDBs could be run as separate servers for
different sets of data

— sharding is controlled by an application, which keeps track
of which RDB server to talk to for each bit of data

— ...but querying, referential integrity, transactions and
consistency control across shards still need to be
implemented

Why NoSQL?

Relational DBMSs have been a successful technology for more than
twenty years, since they provided reliable persistence, concurrency

control and integration mechanisms

RDBs are designed to run on a single machine and do not scale up

horizontally

However, the need to process large volumes of data led to a shift

from scaling vertically to scaling horizontally on clusters

Cluster: large number of commodity machines connected with a

network

History of NoSQL

e Early efforts were focused on proprietary systems by
Amazon and Google in 2000s:
— BigTable from Google

— Dynamo from Amazon

 The term “NoSQL” traces back to a meetup on June
11, 2009 in San Francisco, after which NoSQL DBMs
have become an open-source phenomenon

NoSQL: “Not Only SQL”

Relational

Relational DBs

Birthday ~ PERSONID gd PERSONID HOBBYID g HOBBYID HobbyName HobbyDescription

los The Boss 11-12-1985 i 1 2 1 Archery Shooting arrows from a bow

Fritz von Braun 27-1-1978 2 1 2 2 Conguering the world looking for trouble with your neighboring countries

Freddy Stark 3 2 3 3 building things also known as construction

Delphine Thewiseone 16-9-1986 4 2 4 4 surfing catching waves on a plank

Person info table: reprssenls 3 5 3 swordplay fencing with swords

person Sp':ﬂiﬁ@ T : j 5] lollygagging hanging around doing nothing
Person-Hobby linking table. This 1s Hobby info table: represents hobby
necessary because of the many to many specific information

relationship between hobbies and persons.

Relational databases strive towards normalization (making sure every piece of data is stored just once). LEach table has unique
wentifiers (primary keys) thal are used (0 model the relation between the entities (lables) hence "relational”.

KEY-VALUE STORES

Key Value
i 4 Y {"internal data":[{"entities”:[
Name Jos The Boss {" customer™: [
y . 4 “id":1,"name":"Freddy"},
{"id":2,"name" : "Fritz"}
. 1 7 3 13,
Briwes 11-12-1985 {"legal entities":[
/ E 4 {"id":1, "company":"Maiton"}
, 1}]
[},{"Products”:[
Hobhbies Eil'ChE-'l'}’, i = o,
. conquering the wgrld] 1 ‘FUI"‘HI!.‘tLIPE [
/ "id":1, "name":"Octopus Table","stock":1}
]

3131}

Document Stores

e L T P T P P —
n'rpuu-ﬁur'p-i-.hp-ﬂ =

T Reader Table

LComment Table

Article Table

Author Table

Relational Database approach

Document store approach

Whereas relational databascs chop up data, Document stores

save documents as a single entity

"articles": [

"title™: "title of the article”,
“articleID™: 1,
"body™: “"body of the artricle”,

"awthor”: “Isaac Asimov™,
"comments®: [
{

"username”: "Fritz",

"jein date"™: "1/4/20147,
"commentid®: 1,

"body®: "this is a great article”,
"replies™: [

{
“username”: “Freddy”,
“join date": "11/12/2013",
“commontid": 2,
“body”: "seriously? it's rubbish"
1
I
s
{

"username”: “Stark”,

"Join date™: "13/@6/2011",

"commentid®: 3,

"hody™: "I don't agree with the conclusion”™

Graph Databases

Webshop §customer of

Gy
qu’??
Octopus @f
table

Jos
ff‘fend oOF The Boss

Wide Column Database

/ Col Family A

N

/ Col Family B

\

Row

Cola

Colb

Colc

Key 1

Col d

Val 1.a

Val 1.b

Val 1.c

Val 1.d

Super Column Family

Pl

Billy Bragg

N— ' e Worots
born nationality | year award | / year\
19571220 | English \ 1983 gold /| |[1988)

= &

Row Key

Super Column

Column

Types of NoSQL databases

Key-value: BerkeleyDB, LevelDB, Memcached, Project
Voldemort, Redis, Riak

Document: OrientDB, RavenDB, Terrastore, CouchDB,
MongoDB

Column-family: Amazon SimpleDB, Cassandra, Hypertable,
HBase

Graph: FlockDB, HyperGraphDB, Infinite Graph, Neo4)

DB-Engines Ranking

https://db-engines.com/en/ranking

NoSQL: aggregate data model

Explicit storage of a rich structure of closely related
data that is accessed as a unit (called aggregates)

Aggregates provide a natural unit of interaction for
many applications

Suitable for distributed environment

Downside: difficulty in handling relationships
between entities in different aggregates

Aggregate

* Complex record allowing lists and other record
structures to be nested inside it

* Collection of related objects that are treated
as a unit

Relational schema

Relational data model

Customsr Order
Id Narra 1d CustomerId | ShippingAddressid
1 Hartin L_ g4 i 7
Froduct BillingAddress
Id
- 1d Customerld | Addressid
v NoSOL Distilled
L 15 1 X!
Orderltem Address i
1d Ordarld | Productld | price | - city |
10 a8 27 | 12.45 f 3 Chicage
OrderPayment
1d OrderId | Cardiusber munmmm| tenld
13 99 | 1see-1000 w7 |abetstsrarer |

Example of aggregates

J/ 1n customers

{
it [il 8

“name" ; "Martin”,
“bil1lingAddress”: [{"city":"Chicago"}]

}

// in orders
{

“*id":99,

“customerld”:1,
"orderItems”: [
{
"oroductId™:27,
*orice": 32.45,
"productName”: "NoSQL Distilled”
1
]I] ' 1]
"shippingAddress”:[{"city":"Chicago"}]
"orderPayment™: [
{
"ccinfo™ : "1000-1000-1000-1000",
"txnld":"abelif879rft",
"billingAddress”: {"city": "Chicago"}
}
1,

Aggregate vs. relational data model

* No normalization:

— instead of using IDs, some records may be duplicated and
copied with an aggregate

— minimize the number of aggregates we access during data
interaction

— minimizing the number of nodes to query for data and data
transfer overhead when gathering the data

* Relations between aggregates are still possible:
— e.g., between orders and customers

— aggregate boundaries are context-specific (i.e. depend on the
task and how the data is manipulated by the application)

* Relational databases are aggregate-ignorant:
— and so are NoSQL graph databases

Relational vs. NoSQL DBs: atomicity

 RDBs allow to manipulate any combination of
rows from any tables in a single ACID (Atomic,
Consistent, Isolated and Durable) transaction:

— many rows spanning many tables are updated as a
single atomic operation

— atomic operations succeed or fail entirely
 NoSQL databases support atomic manipulation of
single aggregate at a time:

— cross-aggregate atomic operations need to be
implemented programmatically

* Aggregate-ignorant NoSQL DBs support ACID
transactions similar to relational DBs

CAP theorem

The CAP theorem

* Many database systems forgo transactions
entirely, because the performance impact is
too high

 MySQL was popular since it was lightweight
and didn’t support transactions

e Consistency can and should often be relaxed

sriak

=
|
CouchiDB

"= cassandra

Consistency

CA Category
Network problem might
stop the system.
Ex: RDBMS (Oracle, SOl Server, MySQL)

CP Category
There is a risk of some data
becoming unavailable.
Ex: MongoDB, Hbase, Memcache
BigTable , Redis

Partition

Availabili
Tolerance A o

AP Category

Clients may read inconsistent data
Ex: Cassandra, RIAK, CouchDB

The CAP theorem

Choose DBs

https://www.dataversity.net/choose-right-nosqgl-
database-application/#

Map-Reduce and Hadoop

What is Hadoop?

A software framework that supports data-intensive distributed
applications.

It enables applications to work with thousands of nodes and petabytes of
data.

Hadoop was inspired by Google's MapReduce and Google File System
(GFS).

Hadoop is a top-level Apache project being built and used by a global
community of contributors, using the Java programming language.

Yahoo! has been the largest contributor to the project, and uses Hadoop
extensively across its businesses.

TaIaj,r_'J

Who uses Hadoop?

r

Linkedl &bV amazon

soLe A\ attas

Adobe
lost-fm hulu

http://wiki.apache.org/hadoop/PoweredBy

Who uses Hadoop?

* Yahoo!
— More than 100,000 CPUs in >36,000 computers.

 Facebook

— Used in reporting/analytics and machine learning and also
as storage engine for logs.

— A 1100-machine cluster with 8800 cores and about 12 PB
raw storage.

— A 300-machine cluster with 2400 cores and about 3 PB raw
storage.

— Each (commodity) node has 8 cores and 12 TB of storage.

Very Large Storage Requirements

* Facebook has Hadoop clusters with 15 PB of raw storage
(15,000,000 GB).

* No single storage can handle this amount of data.

 We need a large set of nodes each storing part of the data.

HDFS: Hadoop Distributed File System

1. filename, index Namenode

Client 2. Datanodes, Blockid

3. Read data

Data Nodes

Terabyte Sort Benchmark

* http://sortbenchmark.org/

e Task: Sorting 100TB of data and writing results
on disk (10712 records each 100 bytes).

* Yahoo's Hadoop Cluster is the current winner:

— 173 minutes
— 3452 nodes x (2 Quadcore Xeons, 8 GB RAM)

This is the first time that a Java program has won this competition.

Input

Example: word count

The overall MapReduce word count process

Splitting

Mapping

Shutfling

Reducing Final result

Map

Reduce

Counting Words by MapReduce

Hello World

Bye World

Hello Hadoop
Goodbye Hadoop

BB

Hello World
Bye World

Hello Hadoop
Goodbye Hadoop

Counting Words by MapReduce

Hello World
Bye World

» Sort & Merge »

Q[Combiner J—'

Hello, <1>
World, <1>
Bye, <1>

World, <1>

Bye, <1>
Hello, <1>
World, <1, 1>

Bye, <1>
Hello, <1>
World, <2>

Counting Words by MapReduce

Bye, <1>
Hello, <1>
World, <2>

Goodbye, <1>
Hadoop, <2>
Hello, <1>

~

Sort & Merge »

=

Bye, <1>
Goodbye, <1>
Hadoop, <2>
Hello, <1, 1>
World, <2>

Bye, <1>
Goodbye, <1>
Hadoop, <2>

Hello, <1, 1>
World, <2>

Counting Words by MapReduce

Node 1
- |
t-00000
| | Bye, <1> Bye, <1> | par
| Goodbye, <1> » Reducer » Goodbye, <1> | | Bye 1
| | Hadoop, <2> Hadoop, <2> | Goodbye 1
| | Hadoop 2
part-00001

2

I
Hello, <1, 1> Reducer Hello, <2> I \HNe”(de 5
World, <2> World, <2> : or

High Level Architecture of MapReduce

Master Node

Client
Computer

1
1
1
1
:
> JobTracker |
1
1
1
1
1
1
1

I 1 I 1 i :

I P P !

i TaskTracker] E TaskTracker : : TaskTracker E
1

: L o i

I : I : I I

1 1

i | | P! !

1

i Task Task | | i Task] I | Task Task | 1

1 i 1 i 1

| L o :

Slave Node Slave Node Slave Node

High Level Architecture of Hadoop

Slave Node

Slave Node

Master Node

1 1
. i
1 _ 3| !
1 1
I o | 2 I
1 _M o I
| @ | S i
s “
L o | NN e
[| |
Q v 1
L3 _ R
I o =2 I
H ! s |
| @ 3 i
L | m
vy W SN [N B
................. | Y § S
] “
' — 1
i i
I 1
“ | “
: s |1 |3 v | |
| -
| 2 < <) S |
| (@) S — 2 > I
1 © Q 1
1 = = @© :
i
= 2|V 5 g |
“ = m — 2 “
m “
: [“
“ 1
! I |
1
=
i [
> |
L “
g I g
=)
S | -
) L
S 1 2
o] I
= |

Hadoop Job Scheduling

* FIFO queue matches incoming jobs to
available nodes

— No notion of fairness
— Never switches out running job

Distributed File Cache

* The Distributed Cache facility allows you to
transfer files from the distributed file system
to the local file system (for reading only) of all

participating nodes before the beginning of a
job.

References

 Hadoop Project Page:
http://hadoop.apache.org/

