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FINDING FUNCTIONAL DEPENDENCIES



What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition

2. Finding FDs

3. Closures



“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,Position
is “good FD”
Minimal redundancy,  less 
possibility of  anomalies



We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Intuitively:

EmpID -> Name, Phone,  
Position is “good FD”

But Position -> Phone is a  
“bad FD”
Redundancy!  
Possibility of data  
anomalies

“Good” vs. “Bad” FDs



Student Course Room
Mary CS145 B01
Joe CS145 B01
Sam CS145 B01
.. .. ..

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".

Returning to our original  
example… can you see how the  
“bad FD” {Course} -> {Room} could  
lead to an:

• Update Anomaly
• Insert Anomaly
• Delete Anomaly
• …

“Good” vs. “Bad” FDs



Finding Functional Dependencies

• There can be a very large number of FDs…
– How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all  
instances…
– How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?



Equivalent to asking: Given a set of FDs, F  = {f1,…fn}, does an  
FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies



Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Department}
3. {Color, Category}  {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which / how many other FDs do?!?

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category}  {Price}  
must also hold on any instance…

Example:



Equivalent to asking: Given a set of FDs, F  = {f1,…fn}, does an  
FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies

Axioms:
Reflexivity: if Y X, then X→Y
Augmentation: if X→Y, then WX→WY
Transitivity: if X→Y and Y→Z, then X→Z

Derived Rules:
Union: if X→Y and X→Z, the X→YZ
Decomposition: if X→YZ, then X→Y and X→Z
Pseudo transitivity: if X→Y and WY→Z, then XW→Z



Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Department}
3. {Color, Category}  {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which / how many other FDs hold?

Provided FDs:Products

Example:



Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Dept.}
3. {Color, Category}  {Price}

Which / how many other FDs hold?

Provided FDs:

Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} ?
5. {Name, Category} -> {Color} ?
6. {Name, Category} -> {Category} ?
7. {Name, Category} -> {Color, Category} ?
8. {Name, Category} -> {Price} ?



Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}{Dept.}
3. {Color, Category}{Price}

Can we find an algorithmic way to do  this?

Provided FDs:

Inferred FDs:

Example:

Inferred FD Rule used

4. {Name, Category} -> {Name} Trivial
5. {Name, Category} -> {Color} Transitive (4 -> 1)
6. {Name, Category} -> {Category} Trivial
7. {Name, Category} -> {Color,  Category} Split/combine (5 + 6)
8. {Name, Category} -> {Price} Transitive (7 -> 3)

Yes. But we need to learn about closures before  that!



Closures



Closure of a set of Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An}B

{name}  {color}
{category}  {department}
{color, category}  {price}

Example: F =

Example  
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}



Closure Algorithm

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change;

do:  

if {B1, …, Bn}  C is in F and {B1, …, Bn} X then  

add C to X.

Return X as X+



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}

F =

{name, category}+ =
{name, category}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}



Closure Algorithm

F =

{name, category}+ =
{name, category, color, dept,  
price}

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}



EXAMPLE

Compute {A, B}+ = {A, B, }

Compute {A, F}+ = {A, F, }

R(A,B,C,D,E,F) {A,B}  {C}
{A,D}  {E}
{B}  {D}
{A,F}  {B}



EXAMPLE

Compute {A, B}+ = {A, B, C, D }

Compute {A, F}+ = {A, F,B }

R(A,B,C,D,E,F) {A,B}  {C}
{A,D}  {E}
{B}  {D}
{A,F}  {B}



EXAMPLE

Compute {A, B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, D, E, F}

R(A,B,C,D,E,F) {A,B}  {C}
{A,D}  {E}
{B}  {D}
{A,F}  {B}



3. CLOSURES, SUPERKEYS & KEYS



What you will learn about in this
section

1. Closures
2. Superkeys & Keys



Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if X A

1. Compute X+

2. Check if A  X+

Note here that X is a set of  
attributes, but A is a single  
attribute. Why does considering  
FDs of this form suffice?



Using Closure to Infer 
ALL FDs

{A,B}  C
{A,D}  B
{B}  D

Example: 
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}

{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

No need to  
compute  
these- why?

We did not include {B,C},
{B,D}, {C,D}, {B,C,D} to save
some space.



Using Closure to Infer 
ALL FDs

{A,B}  C
{A,D}  B
{B}  D

Example: 
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y =:

{A,B}  {C,D}, {A,D}  {B,C},
{A,B,C}  {D}, {A,B,D}  {C},
{A,C,D}  {B}



Using Closure to Infer 
ALL FDs

{A,B}  C
{A,D}  B
{B}  D

Example: 
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y =:

{A,B}  {C,D}, {A,D}  {B,C},
{A,B,C}  {D}, {A,B,D}  {C},
{A,C,D}  {B}

“Y is in the  
closure of  
X”

Step 1: Compute X+, for every set of attributes X:



Using Closure to Infer 
ALL FDs

{A,B}  C
{A,D}  B
{B}  D

Example: 
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y =:

{A,B}  {C,D}, {A,D}  {B,C},
{A,B,C}  {D}, {A,B,D}  {C},
{A,C,D}  {B}

The FD X Y  
is non-trivial

Step 1: Compute X+, for every set of attributes X:



Superkeys and Keys



Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.  
for any other attribute B in R,
we have {A1, …, An}  B

A key is a minimal superkey

I.e. all attributes are  
functionally  
determined by a  
superkey

Meaning that no subset  
of a key is also a  
superkey



Finding Keys and Superkeys

• For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Do we need to check all  
sets of attributes?



Example of Finding Keys

Product(name, price, category, color)

{name, category}  price
{category}  color

What is a key?



Example of Keys

Product(name, price, category, color)

{name, category}  price
{category}  color

{name, category}+ = {name, price, category, color}

= the set of all attributes
this is a superkey
this is a key, since neither name nor

category alone is a superkey



Decompositions



Decomposition of a relation is done when a relation in relational model is not in 
appropriate normal form.

Relation R is decomposed into two or more relations if decomposition is lossless
join as well as dependency preserving.

Decompositions 



If R(A, B, C) satisfies A  B
We can project it on A, B and A,C without losing information
Lossless decomposition vs. Lossy decomposition

If we decompose a relation R(A, B, C) into relations 

R1 = AB(R) and R2 = AC(R)
AB(R) is the projection of R on AB

is the natural join operator

Decomposition is lossy if R R1 R2
Decomposition is lossless if R = R1 R2

Decompositions 



Decompositions 

R1 = the projection of R on A1, ..., An, B1, ..., Bm 

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

R2 = the projection of R on A1, ..., An, C1, ..., Cp 



Properties of Decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Price

Gizmo 19.99

OneClick 24.99

Gizmo 19.99

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

I.e. it is a Lossless 
decomposition

We need a 

decomposition to be
“correct”



Lossy Decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

What’s wrong here?

Need to avoid “bad” 
decompositions



Lossy Decomposition

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera

Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera

19.99 Camera

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera

Gizmo 19.99 Camera

OneClick 19.99 Camera
Gizmo 24.99 Camera



Lossless Decompositions

A decomposition R to (R1, R2) is lossless if R = R1 R2

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)



To check for lossless join decomposition using FD set, following conditions must 
hold: 

1- Union of Attributes of R1 and R2 must be equal to attribute of R. Each 
attribute of R must be either in R1 or in R2.

Att(R1) U Att(R2) = Att(R)

2- Intersection of Attributes of R1 and R2 must not be NULL.

Att(R1) ∩ Att(R2) ≠ Φ

3- Common attribute must be a key for at least one relation (R1 or R2).

Att(R1) ∩ Att(R2) -> Att(R1) 
or 

Att(R1) ∩ Att(R2) -> Att(R2)



Example

A relation R (A, B, C, D) with FD set { A -> BC} is decomposed into R1(ABC) and 
R2(AD) 

Is lossless join decomposition?

First condition holds true as Att(R1) U Att(R2) = (ABC) U (AD) = (ABCD) = Att(R).

Second condition holds true as Att(R1) ∩ Att(R2) = (ABC) ∩ (AD) ≠ Φ

Third condition holds true as Att(R1) ∩ Att(R2) = A is a key of R1(ABC) because 
A->BC is given.



Dependency Preserving Decomposition

If we decompose a relation R into relations R1 and R2, All dependencies of R 

either must be a part of R1 or R2 or must be derivable from combination of 

FD’s of R1 and R2.

For Example, A relation R (A, B, C, D) with FD set { A -> BC} is decomposed into 

R1(ABC) and R2(AD) which is dependency preserving because FD A -> BC is a 

part of R1(ABC).



Question

Consider a schema R(A,B,C,D) and functional dependencies A->B and C->D. Then 

the decomposition of R into R1(AB) and R2(CD) is 

A. dependency preserving and lossless join

B. lossless join but not dependency preserving

C. dependency preserving but not lossless join

D. not dependency preserving and not lossless join



Answer

For lossless join decomposition, these three conditions must hold true:

Att(R1) U Att(R2) = ABCD = Att(R)

Att(R1) ∩ Att(R2) = Φ, which violates the condition of lossless join 

decomposition. Hence the decomposition is not lossless.

For dependency preserving decomposition,

A -> B can be ensured in R1(AB) and C -> D can be ensured in R2(CD). Hence it is 

dependency preserving decomposition.

So, the correct option is C.
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