
Normalization
Examples

Example I

Take the following table.

StudentID is the primary key.

Is it 1NF?

No. There are repeating groups (subject,
subjectcost, grade)

How can you make it 1NF?

Create new rows so each cell contains only
one value

But now look – is the studentID primary
key still valid?

No – the studentID no longer uniquely
identifies each row

You now need to declare StudentID and Subject
together to uniquely identify each row.

So the new key is StudentID and Subject.

So. We now have 1NF.

Is it 2NF?
(StudentID, Subject)

StudentID -> StudentName

StudentName and Address are dependent on
studentID (which is part of the key)

This is good.

But they are not dependent on
Subject (the other part of the key)

And 2NF requires…

All non-key fields are dependent on
the ENTIRE key (StudentID + Subject)

So it’s not 2NF

How can we fix it?

Make new tables

• Make a new table for each primary key field
• Give each new table its own primary key
• Move columns from the original table to the

new table that matches their primary key

Step 1

STUDENT TABLE (key = StudentID)

Step 2

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

Step 3

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

Step 3

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

Step 4 - relationships

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

Step 4 - cardinality

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1 Each student can only appear
ONCE in the student table

Step 4 - cardinality

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

Each subject can only appear
ONCE in the subjects table

Step 4 - cardinality

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8

A subject can be listed MANY
times in the results table (for
different students)

Step 4 - cardinality

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8

A student can be listed MANY
times in the results table (for
different subjects)

A 2NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8

SubjectCost is only
dependent on the

primary key,
Subject

A 2NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8

Grade is only dependent
on the primary key

(StudentID + Subject)

A 2NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8
Name, Address are only

dependent on the
primary key
(StudentID)

But is it 3NF?

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8

So it is
2NF!

A 3NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8

Oh oh
What?

A 3NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8
HouseName is

dependent on both
StudentID +
HouseColour

A 3NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8
Or HouseColour is
dependent on both

StudentID +
HouseName

A 3NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8
But either way,

non-key fields are
dependent on MORE
THAN THE PRIMARY

KEY (StudentID)

A 3NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8
And 3NF says that

non-key fields must
depend on nothing

but the key

A 3NF check

STUDENT TABLE (key = StudentID)

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8
WHAT DO
WE DO?

Again, carve off the offending fields

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8

A 3NF fix

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8

A 3NF fix

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key = StudentID + Subject)

1

1

8 8
1

8

A 3NF win!

SUBJECTS TABLE (key = Subject)

RESULTS TABLE (key =
StudentID+Subject)

1

1

8 8

1
8

Or…

The Reveal

Before…

After…

RESULTS TABLE (key = StudentID+Subject)

1
1

8

8
1

8
SUBJECTS TABLE (key = Subject)

Example II

Normalization Example

• We have a table representing orders in an online store
• Each row represents an item on a particular order
• Primary key is {Order, Product}

Orders(Order, Product, Quantity, UnitPrice, Customer, Address)

Functional Dependencies
Orders(Order, Product, Quantity, UnitPrice, Customer, Address)

• Each order is for a single customer:
– Order  Customer

• Each customer has a single address
– Customer  Address

• Each product has a single price
– Product  UnitPrice

• As Order  Customer and Customer  Address
– Order  Address

Order -> Customer, Address

2NF Solution (I)

• First decomposition
– First table

– Second table

Order Product Quantity UnitPrice

Order Customer Address

2NF Solution (II)

• Second decomposition
– First table

– Second table

– Third table

Order Product Quantity

Order Customer Address

Product UnitPrice

3NF
• In second table

– Customer  Address

• Split second table into

Order Customer Address

Order Customer

Customer Address

Normalization to 2NF

• Second normal form means no partial dependencies on
candidate keys
– {Order}  {Customer, Address}
– {Product}  {UnitPrice}

• To remove the first FD we project over
{Order, Customer, Address} (R1)

and
{Order, Product, Quantity, UnitPrice} (R2)

Normalization to 2NF

• R1 is now in 2NF, but there is still a partial FD in R2
{Product}  {UnitPrice}

• To remove this we project over
{Product, UnitPrice} (R3)
and
{Order, Product, Quantity} (R4)

Normalization to 3NF

• R has now been split into 3 relations - R1, R3, and R4
– R3 and R4 are in 3NF
– R1 has a transitive FD on its key

• To remove
{Order}  {Customer}  {Address}

• we project R1 over
– {Order, Customer}
– {Customer, Address}

Normalization

• 1NF:
– {Order, Product, Customer, Address, Quantity, UnitPrice}

• 2NF:
– {Order, Customer, Address}, {Product, UnitPrice}, and

{Order, Product, Quantity}
• 3NF:

– {Product, UnitPrice}, {Order, Product, Quantity},
{Order, Customer}, and {Customer, Address}

