
Transactions

SQL Writes

UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Example: ATM Transaction

Read Balance
Give money
Update Balance

Read Balance
Update Balance
Give money

vs

Transactions: Basic Definition

A transaction (“TXN”) is a sequence of
one or more operations (reads or writes)
which reflects a single real-world
transition.

START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

In the real world, a
TXN either happened
completely or not at all

Transactions

• Major component of database systems
• Critical for most applications; arguably more so

than SQL

• Turing awards to database researchers:
– Charles Bachman 1973
– Edgar Codd 1981 for inventing relational dbs
– Jim Gray 1998 for inventing transactions

Transactions in SQL

• In “ad-hoc” SQL, each statement = one transaction

• In a program, multiple statements can be grouped together as a transaction

START TRANSACTION
UPDATE Bank SET amount = amount – 100
WHERE name = ‘Bob’
UPDATE Bank SET amount = amount + 100
WHERE name = ‘Joe’

COMMIT

Motivation for Transactions

Grouping user actions (reads & writes) into transactions
helps with two goals:

1. Recovery & Durability: Keeping the DBMS data
consistent and durable in the face of crashes, aborts,
system shutdowns, etc.

1. Concurrency: Achieving better performance by
parallelizing TXNs without creating anomalies

Motivation -- Recovery & Durability

1. Recovery & Durability of user data is essential for
reliable DBMS usage

• The DBMS may experience crashes (e.g. power outages, etc.)

• Individual TXNs may be aborted (e.g. by the user)

Idea: Make sure that TXNs are either durably stored in
full, or not at all; keep log to be able to “roll-back” TXNs

Client 1:
INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

What goes wrong?

Crash / abort!Crash / abort!

Protection against crashes / aborts

Protection against crashes / aborts

Client 1:
START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT OR ROLLBACK

Now we’d be fine! We’ll see how / why this lecture

Motivation -- Concurrent execution

2. Concurrent execution of user programs is essential for
good DBMS performance.

• Disk accesses may be frequent and slow- optimize for
throughput (# of TXNs), trade for latency (time for any one TXN)

• Users should still be able to execute TXNs as if in isolation and
such that consistency is maintained

Idea: Have the DBMS handle running several user TXNs
concurrently, in order to keep CPUs humming…

Multiple users: single statements

Client 1: UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2: UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Two managers attempt to discount products concurrently-
What could go wrong?

Multiple users: single statements

Client 1: START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

COMMIT

Now works like a charm- we’ll see how / why next lecture…

Transaction States

Transaction Properties: ACID

• Atomic
• State shows either all the effects of txn, or none of them

• Consistent
• Txn moves from a state where integrity holds, to another where integrity

holds

• Isolated
• Effect of txns is the same as txns running one after another (ie looks like

batch mode)

• Durable
• Once a txn has committed, its effects remain in the database

ACID continues to be a source of great debate!

In order to maintain consistency in a database, before and after the
transaction, certain properties are followed. These are called ACID
properties.

ACID: Atomicity

• TXN’s activities are atomic: all or nothing

• Intuitively: in the real world, a transaction is something that
would either occur completely or not at all

• Two possible outcomes for a TXN

• It commits: all the changes are made

• It aborts: no changes are made

Atomicity

Either the entire transaction takes place at once or doesn’t happen at all. There is

no midway i.e. transactions do not occur partially. Each transaction is considered

as one unit and either runs to completion or is not executed at all. It involves the

following two operations:

Commit: If a transaction commits, changes made are visible.

Abort: If a transaction aborts, changes made to database are not visible.

Atomicity is also known as the ‘All or nothing rule’.

Consider the following transaction T consisting of T1 and T2:

Transfer of 100 from account X to account Y.

If the transaction fails after completion of T1 but before completion of T2.(say,

after write(X) but before write(Y)), then amount has been deducted from X but

not added to Y.

This results in an inconsistent database state. Therefore, the transaction must be

executed in entirety in order to ensure correctness of database state.

ACID: Consistency

• The tables must always satisfy user-specified integrity constraints
• Examples:

• Account number is unique

• Stock amount can’t be negative

• Sum of debits and of credits is 0

• How consistency is achieved:
• Programmer writes a TXN to go from one consistent state to a

consistent state

• System makes sure that the TXN is atomic

Consistency
Integrity constraints must be maintained so that the database is consistent before and after the

transaction. It refers to the correctness of a database.

The total amount before and after the transaction must be maintained.

Total before T occurs = 500 + 200 = 700.

Total after T occurs = 400 + 300 = 700.

Therefore, database is consistent. Inconsistency occurs in case T1 completes but T2 fails. As a result T

is incomplete.

ACID: Isolation

• A transaction executes concurrently with other transactions

• Isolation: the effect is as if each transaction executes in
isolation of the others.

• E.g. Should not be able to observe changes from other
transactions during the run

ACID: Durability

• The effect of a TXN must continue to exist (“persist”) after
the TXN
• And after the whole program has terminated
• And even if there are power failures, crashes, etc.
• And etc…

• Means: Write data to disk

What Could Go Wrong?

Why is it hard to provide ACID properties?

• Concurrent operations
– Isolation problems
– We saw one example earlier

• Failures can occur at any time
– Atomicity and durability problems

• Transaction may need to abort

Challenges for ACID properties

• In spite of Power failures (not media failures)

• Users may abort the program: need to “rollback changes”
• Need to log what happened (support Atomicity and Durability)

• Many users executing concurrently
• Can be solved via locking (support Cuncurrency)

A Note: ACID is contentious!

• Many debates over ACID, both historically and currently

• Some “NoSQL” DBMSs relax ACID

• In turn, now “NewSQL” reintroduces ACID compliance to
NoSQL-style DBMSs…

ACID is an extremely important & successful paradigm,
but still debated!

Acknowledgement
Some of these slides are taken from cs145 course offered by Stanford University.

