COMP I22/L Lecture 20

Mahdi Ebrahimi

Outline

- Exploiting don't cares in Karnaugh maps
- Multiplexers
- Arithmetic Logic Units (ALUs)

Exploiting Don't Cares in Karnaugh-Maps

Don't Cares

- Occasionally, a circuit's output will be unspecified on a given input
- Occurs when an input's value is invalid
- In these situations, we say the output is a don't care, marked as an X in a truth table

Example: Binary Coded Decimal

- Occasionally, it is convenient to represent decimal numbers directly in binary, using 4bits per decimal digit
- For example, a digital display

Example: Binary Coded Decimal

- Not all binary values mad to decimal digits

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binary	Decimal
1000	8
1001	9
1010	X
1011	X
1100	X
1101	X
1110	X
1111	X

Significance

- Recall that in a K-map, we can only group 1s
- Because the value of a don't care is irrelevant, we can treat it as a 1 if it is convenient to do so (or a 0 if that would be more convenient)

Example

- A circuit that calculates if the binary coded decimal input $\% 2==0$

Example

- A circuit that calculates if the binary coded decimal input $\% 2==0$

I_{3}	I_{2}	I_{1}	I_{0}	R
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0

I_{3}	I_{2}	I_{1}	I_{0}	R
1	0	0	0	1
1	0	0	1	0
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Example

As a K-map

$\mathrm{I}_{1} \mathrm{I}_{0}$				
$\mathrm{I}_{3} \mathrm{I}_{2}$	00	01	11	10
00	1	0	1	0
01	1	0	1	0
11	X	X	X	X
10	1	0	X	X

Example

If we don't exploit don't cares...

$I_{3} I_{2}$	00	01	11	10
00	$I_{1} I_{0}$	1	0	1
01	1	0	1	0
11	X	X	X	X
10	1	0	X	X

Example

If we do exploit don't cares...
$I_{3} I_{2} I_{1} I_{0}$
00
01
11

10 | 1 | | | |
| :---: | :---: | :---: | :---: |
| 1 | | | |
| X | 0 | 01 | 11 |
| 1 | 10 | | |
| 1 | 0 | X | 0 |
| 1 | X | X | |

Example

If we do exploit don't cares...

$$
R=!I_{1}!I_{0}+I_{1} I_{0}
$$

$\mathrm{I}_{3} \mathrm{I}_{2}$	00	01	11	10
00	1	0	1	0
01	1	0	1	0
11	X	X	X	X
10	1	0	X	X

Multiplexers

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?
- We don't always do the same thing - it depends on the instruction
- What do we need here?

Motivation

- At this point, you've seen a lot of straightline circuits
- However, this doesn't quite match up with respect to what a processor does. Why?
- We don't always do the same thing - it depends on the instruction
- What do we need here?
- Some form of a conditional

Conditional

- Assume selector, A, B, and R all hold a single bit
- How can we implement this using what we have seen so far? (Hint: what does the truth table look like?)

$$
R=\text { (selector) ? } A: B
$$

$$
R=\text { (selector) ? A : B }
$$

S	A	B	R
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

```
R = (selector) ? A : B
```

S	A	B	R
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Unreduced sum-of-products:
$R=!S!A B+!S A B+S A!B+S A B$

```
R = (selector) ? A : B
```

S	A	B	R
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Unreduced sum-of-products:
$R=!S!A B+!S A B+S A!B+S A B$

Reduced sum-of-products:
$R=!S B+S A$

Slight Modification

Original

$$
R=\text { (selector) ? A : B }
$$

Modified

R = (selector) ? doThis() : doThat()

Slight Modification

Original

$$
R=\text { (selector) ? } A: B
$$

Modified
$R=$ (selector) ? doThis() : doThat()
Intended semantics: either doThis () or doThat () is executed. Our formula from before doesn't satisfy this property:

$$
R=\text { !S*doThat() + S*doThis() }
$$

Slight Modification

Original

$$
R=\text { (selector) ? A : B }
$$

Modified
$\mathrm{R}=$ (selector) ? doThis() : doThat()

- Fixing this is hard, but possible
- Involves circuitry we'll learn later
- Oddly enough, this isn't as big of a problem as it seems, and it's ironically faster than doing just one or the other. Why?

Slight Modification

Original

$$
R=\text { (selector) ? A : B }
$$

Modified
$\mathrm{R}=$ (selector) ? doThis() : doThat()

- Oddly enough, this isn't as big of a problem as it seems, and it's ironically faster than doing just one or the other. Why? branches executed in parallel at the hardware level. Faster because extra circuitry is extra.

Multiplexer

- Component that does exactly this:

$$
R=\text { (selector) ? } A: B
$$

Question

- Recall the arithmetic logic unit (ALU), which is used to add, subtract, shift, perform bitwise operations, etc.
- How might a multiplexer be useful for an ALU?

Question

- Recall the arithmetic logic unit (ALU), which is used to add, subtract, shift, perform bitwise operations, etc.
- How might a multiplexer be useful for an ALU? - Do all operations at once in parallel, and then use a multiplexer to select the one you want

Example

- Let's design a one-bit ALU that can do bitwise AND and bitwise OR
- It has three inputs: A, B, and S, along with one output R
- S is a code provided indicating which operation to perform; 0 for AND and 1 for OR

Example

Bigger Multiplexers

- Can have a multiplexer with more than two inputs
- Need multiple select lines in this case
- Question: how many select lines do we need for a 4 input multiplexer?

Bigger Multiplexers

- Can have a multiplexer with more than two inputs
- Need multiple select lines in this case
- Question: how many select lines do we need for a 4 input multiplexer? - 2 . Values of different lines essentially encode different binary integers.

Bigger Multiplexers

- We can build up bigger multiplexers from 2-input multiplexers. How?

