COMP 122/L Lecture 12

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey




Outline

® Memory instructions

® Load (1dr)
® Store (str)

® Arrays




Memory Operations




Refresher

You've already seen one form of 1dr for handling strings




Refresher

You've already seen one form of 1dr for handling strings

.data
my string:
.asciz “hello”

.Lext
ldr r0, =my string




Refresher

You've already seen one form of 1dr for handling strings

.data
my string:
.asciz “hello”

.Lext
ldr r0O, =my string

Puts starting address of “hello” in rQ

-This was used for setting up swi instructions
-While this uses memory, it did so indirectly (the swi instruction actually read the memory, not us)




Putting Integers in Memory

.word directive will put a 32-bit integer in memory,
much like . asciz will put a string in memory




Putting Integers in Memory

.word directive will put a 32-bit integer in memory,
much like . asciz will put a string in memory

.data
my string:
.asciz “hello”
first int:
.word 42

second 1nt:
.word 38




Reading Integers From Memory

Step |:use 1dr to put its address into a register...




Reading Integers From Memory

Step l:use 1dr to put its address into a register...

.data
first int:
.word 472

second 1nt:
.word 38

.Lext




Reading Integers From Memory

Step 2: use 1dr with [] to read the value at the address

.data
first int:
.word 472

second 1nt:
.word 38

.text
ldr r0, =first int




Reading Integers From Memory

Step 2:use 1dr with [] to read the value at the address

.data
first int:
.word 472

second 1nt:
.word 38

.text
ldr r0, =first int
l1dr rl, [rO]




Reading Integers From Memory

Step 2:use 1dr with [] to read the value at the address

.data
first int:
.word 42

second 1int:
.word 38

.text
ldr r0, =first int
ldr rl, [rO]




Writing Integers to Memory

Step |: use 1dr to put its address into a register...




Writing Integers to Memory

Step |:use 1dr to put its address into a register..

.data
first int:
.word 42

second 1int:
.word 38

.Lext




Writing Integers to Memory

Step 2:use str to write a value at that address

.data
first int:
.word 42

second 1int:
.word 38

. Cext
ldr r0, =first int




Writing Integers to Memory

Step 2:use str to write a value at that address

.data
first int:

.word 42
second 1int:

.word 38

.text
ldr r0, =first int
mov rl, #57
str rl, [rO]




Example:

memory varlables.s




Arrays




Specifying Arrays

Only distinction from variables:
multiple values are specified with the . word directive




Specifying Arrays

Only distinction from variables:
multiple values are specified with the . word directive

.data
first int:
.word 42




Specifying Arrays

Only distinction from variables:
multiple values are specified with the . word directive

.data
first int:
.word 42




Accessing Arrays

Basic approach: increment memory address




Accessing Arrays

Basic approach:increment memory address

.data

arr:
.word 32, 65, 776
.text

ldr r0O, =arr

1dr rl, [rO]

add r0, r0, #4

ldr r2, [rO]

add r0, r0, #4

l1dr r3, [rO]

—-Offsets increment by 4 because one word is 4 bytes




Accessing Arrays

Basic approach: increment memory address

.data
arr:

.word 32,

.text
ldr r0, =arr
1dr rl, [rO]
add r0, r0, #4
l1dr r2, [rO]
add r0, r0, #4
l1dr r3, [rO]




Accessing Arrays

Basic approach: increment memory address

data 32 65 76

att: arr |arr + 4larr + 8
.word 32, 65, 76
.text

ldr r0, =arr el e S

l1dr rl, [rO]

add r0, r0, #4 . (5

l1dr r2, [rO]

add r0O, r0, #4

ldr r3, [rO] TIOE i 20

-Top right corner shows memory layout in terms of arr




Example:

register indirect.s




More on Memory Access

ldr r3, [rO]

® The above instruction uses the register indirect
addressing mode

® Addressing mode: how the processor
accesses something

® Register indirect:Memory access is done
through an address in a register

® Many more available: see register *.s

-See also https://www.cs.uregina.ca/Links/class-info/301/ARM-addressing/lecture.html




ARM addressing Modes

Name Llternative Name LEM Examples

Register to register  Register direct Mov RO, RI
pbsolute pirect LDR RO, MEM
Literal  Immediate Mov RO, #15

Pre-indexed, Register indirect LDE RO, [R1, #4]
base with displacement with offset

Pre—-indexed, Register indirect LDR RO, [R1, #4]!
autoindexing pre—-incrementing

Post-indexing, Register indirect LDR RO, [R1l], #4
autoindexed post-increment

Double Reg indirect Register indirect LDR RO, [R1l, R2]

Register indexed

Double Reg indirect Register indirect LDE RO, [Rl1l, r2, LSL #2]
with scaling indexed with scaling
Program counter relative LDR RO, [PC, #offset]

https://www.cs.uregina.ca/Links/class-info/301/ARM-addressing/lecture.html




ARM addressing Modes

Addressing Mode

Assembly Mnemonic

Effective address

FinalValue in R1

Indexed, base LDR RO, [R1] R1 R1

Register indirect

Pre-indexed, LDR RO, [R1, #d] R1+d R1

base with displacement

Pre-indexed, LDR RO, [R1, #d]! R1+d R1+d

autoindexing

Post-indexed, LDR RO, [R1], #d R1 R1+d

autoindexed

Double Reg indirect LDR RO, [R1, R2] R1 +R2 R1

Double Reg indirect LDR RO, [R1, R2, LSL #2] R1 + (R2 * 4) R1 (R2 also unchanged)

with scaling

https://www.cs.uregina.ca/Links/class-info/301/ARM-addressing/lecture.html




Array Access Example:

print array fixed length.s




Writing to Array Example:

write array lncreasing.s




Another Array Access Example:

print array variable length.s




